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A B S T R A C T

Given a set of demand and potential facility locations and a set of fully available charged drones,

an agency seeks to locate a pre-specified number of capacitated facilities and assign drones to the

located facilities to serve the demands. The facilities serve as drone launching sites for dis-

tributing the resources. Each drone makes several one-to-one trips from the facility location to

the demand points and back until the battery range is met. The planning period is short-term and

therefore the recharging of drone batteries is not considered. This paper presents an integer linear

programming formulation with the objective of maximizing coverage while explicitly in-

corporating the drone energy consumption and range constraints. The new formulation is called

the Maximum Coverage Facility Location Problem with Drones or simply MCFLPD. The MCFLPD

is a complex problem and even for relatively small problem sizes a state of the art MIP solver may

require unacceptably long running times to find feasible solutions. Computational efficiency of

MCFLPD solutions is a key factor since conditions associated with customer demands or weather

conditions (e.g., wind direction and speed) may change suddenly and require a fast global re-

optimization. To better balance solution quality and running times novel greedy and three-stage

heuristics (3SH) are developed. The 3SH is based on decomposition and local exchange principles

and involves a facility location and allocation problem, multiple knapsack subproblems, and a

final local random search stage. On average the 3SH solutions are within 5% of the best Gurobi

solutions but at a small fraction of the running time. Multiple scenarios are run to highlight the

importance of changes in drone battery capabilities on coverage.

1. Introduction

Several companies like Amazon, Google, UPS, and Flytrex are evaluating the potential use of Unmanned Aerial Vehicles (UAVs) or

drones for commercial service or package deliveries (Mack, 2018). Drones are not restricted by the availability of existing infra-

structure and therefore can lead to improved last-mile efficiency, safety, and reliability (DHL, 2014). Drones are particularly suitable

for emergency applications like search and rescue (Karaca et al., 2018), deliveries of critical medical supplies post-disaster or for

emergency response (Thiels et al., 2015; Scott and Scott, 2018), and crop irrigation and pesticide spraying (Albornoz and Giraldo,

2017; Berner and Chojnacki, 2017; Burema and Filin, 2016; Wang et al., 2016; Giles et al., 2016; Faiçal et al., 2014; Costa et al.,

2012). Advances in drone technologies regarding lighter and stronger materials for frames (Hassanalian and Abdelkefi, 2017),

sensing and coordinating algorithms (Yanmaz et al., 2018, 2017), battery capacity (Li et al., 2017; Fehrenbacher, 2018) and a

predictable regulatory framework (FAA, 2018b) are expected to accelerate large-scale UAV adoption. However, a key challenge to
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drone deliveries is their limited range and payload.

Drones have significantly smaller payload carrying capacities and ranges compared to trucks. A diesel cargo van RAM Pro Master

2500 has 378 times the carrying capacity and nearly 20 times the range of a typical drone (Figliozzi, 2017). Moreover, the maximum

range of the drone decreases as payload increases. When delivery locations are distributed across a region (urban or rural) trucks can

usually cover all demand points from one depot. However, due to its limited range, a drone-based delivery system requires more

depots or launching sites distributed across the region. Also, unexpected and/or adverse weather conditions, e.g., headwinds, may

dramatically alter the energy consumption and/or range of a delivery drone. Hence, computational efficiency is vital when analyzing

drone delivery systems since conditions associated with customer demands and/or weather conditions (e.g. wind direction and

speed) may change suddenly and require a fast global reoptimization. A contribution of this research is a novel integer programming

model to locate drone launching facilities to meet the demands of spatially distributed customers. This model is called the Maximum

Coverage Facility Location Problem with Drones (MCFLPD) and comprises the following: (i) selection of a pre-specified number of

capacitated facilities from a list of potential facility locations as drone launching sites, (ii) distribution of a limited number of drones

to the selected facilities, (iii) assignment of demand locations to open facilities and drones while respecting the capacity of the facility

and the range constraints of the drones.

One of the motivations behind the choice of coverage objective is to evaluate the feasibility of using drones to deliver medical

supplies such as defibrillators (Boutilier et al., 2017; Claesson et al., 2017), blood deliveries (Amukele et al., 2017) or critical relief

after extreme natural events (Anaya-Arenas et al., 2014; Holguín-Veras et al., 2012; Ozdamar, 2011) while accounting for drone

battery range limitations. To better balance solution quality and running times novel greedy and a three-stage heuristics (3SH) are

developed. The 3SH is based on decomposition and local exchange principles and involves a facility location and allocation problem,

multiple knapsack subproblems, and a final exchange based random search stage.

After a literature review section, the MCFLPD and the proposed solution heuristics are introduced. A real-world case study for

making drone deliveries in Portland, OR is presented next. Results concerning solution quality and running times are later presented

and discussed. The paper ends with battery sensitivity analyses and conclusions.

2. Literature review

A majority of the research on drone delivery applications have focused on UAV or drone routing and scheduling leading to several

interesting variants of the traveling salesman and vehicle routing problems. Murray and Chu (2015) studied the flying sidekick

traveling salesman problem (FSTSP) where a drone and a truck deliver in collaboration to a set of customers. The drone takes-off from

the truck, makes the delivery, and rendezvous back with the truck at a different location. Murray and Chu (2015) also proposed the

parallel drone scheduling traveling salesman problem (PDSTSP) where a set of UAVs and a truck make deliveries from a single depot

to customers. Murray and Chu (2015) provide mixed integer linear programming formulations and a route and reassign heuristic for

solving the FSTSP and a partitioning heuristics for solving the PDSTSP problem. Ponza (2016) modified the drone delivery time

constraints in Murray and Chu (2015)’s FSTSP formulation and developed a simulated annealing metaheuristic. Agatz et al. (2018)

denoted the FSTSP as Traveling Salesman Problem with Drones (TSPD), provided approximation results comparing TSPD and TSP

optimal solution, and developed several route-first cluster second heuristics which vary in the initial tour generation and assignment

of drone delivery nodes. Yurek and Ozmutlu (2018) solved the TSPD using a two-stage iterative decomposition approach where truck

routes are determined in the first stage, and drone nodes are assigned in the second stage. Ha et al. (2018) focused on the min-cost

TSPD variant of Murray and Chu (2015)’s FSTSP and developed a greedy randomized adaptive search procedure which builds TSPD

routes from TSP routes. Carlsson and Song (2017) applied a continuous approximation to the FSTSP (denoted as horsefly routing

problem in this paper) and proved that the efficiency gain by adding a drone is a function of the square root of the ratio of the drone

and truck velocities.

Wang et al. (2017) and Poikonen et al. (2017) developed several worst-case bounds for the vehicle routing problem with drones

(VRPD) where several delivery trucks and drones (launched from trucks) are used to satisfy demands. The bounds provide insights on

modifying existing solution algorithms for TSP and VRP variants to obtain solutions to VRPD. Daknama and Kraus (2017) found

several nested local search heuristics to be more efficient than the greedy drone assignment approach in solving VRPD. Dayarian et al.

(2017) studied the vehicle routing with drone resupply problem where a single drone resupplies a delivery truck from a depot and

found that the use of drones improved delivery reliability. Dayarian et al. (2017) studied the dynamic and multiple vehicles and

drones variant of Murray and Chu (2015)’s PDSTSP. The authors developed an approximate dynamic programming based heuristic

decision making policy to spatially partition the customers into those being served by trucks and those being served by drones. The

results show that adding drones to truck fleets can reduce fleet size and increase deliveries. In contrast to the above works, we consider a

drone only delivery system and do not consider truck deliveries as this is the case for medical supplies (Amukele et al., 2017).

Dorling et al. (2017) modeled the drone delivery problem as a single depot multi-trip vehicle routing problem and used linear

approximations to study the impact of battery and payload weight on energy consumption. The model was solved using a simulated

annealing metaheuristic. Optimizing battery weight was found to be critical for system efficiency. Kim et al. (2018) use a robust

optimization approach to model the impact of air temperature uncertainty on drone battery capacity and studied the ability of a fleet

of drones to visit multiple locations. Choi and Schonfeld (2017) used a continuous approximation approach to understand the factors

affecting a fleet of drone delivery systems. The authors found that battery improvements are critical to overall system coverage and

drone delivery systems are more effective in areas with higher demand densities. In this work, we do not model one-to-many deliveries on

each route. We assume that the drones make multiple one-to-one deliveries from the depot locations subject to battery range constraints as is

the case with current deliveries of blood supplies.
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Recently, several researchers have focused on facility location problems for drone delivery systems that are more closely related to

the topic of this research. For example, Chowdhury et al. (2017) used a continuous approximation approach to develop a huma-

nitarian logistics supply chain post-disaster considering both drones and truck deliveries. The objective is to minimize transportation,

inventory, and facility location costs.We adopt a discrete approach with the objective of maximizing coverage. Golabi et al. (2017) studied

the relief distribution center location model post-disaster where edges may or may not have collapsed due to disaster. Inaccessible

demand points are served using drones. The objective is to minimize the travel times of demand points to located facilities and travel

time from facilities to inaccessible drones. The model was solved using several metaheuristics with genetic algorithm being the most

efficient. Pulver and Wei (2018) developed a facility location model to maximize primary and secondary coverage in the context of

transporting and delivering medical supplies using drones. Pulver and Wei (2018) do not consider capacity constraints at drone

launching sites or energy consumption as a function of payload and distance for each individual delivery. Also, this paper considers

range constraint on multiple trips whereas Pulver and Wei (2018) assume that only one trip is made in the planning period by a

drone.

Kim et al. (2017) developed a two-stage model for drone-based pickup and deliveries of medical supplies. In the first stage, a set

covering problem is solved to establish depot locations. The second stage is a multi-drone vehicle routing problem. Both Pulver and

Wei (2018) and Kim et al. (2017) use solvers such as Gurobi and GAMS to solve their models. This paper considers a single stage

formulation for locating capacitated facilities and assigning demand points to drones. This research also models the allocation of a fixed

amount of drones to facilities which is not considered in most of the works mentioned above.

Hong et al. (2018) study a drone recharging facility location problem which can help increase the coverage range of drones for

commercial deliveries. The analysis is based on the worst case drone range at maximum payload. The model is solved using a multi-

stage heuristic which embeds principles of greedy, exchange, and simulated annealing solution algorithms. Other researchers have

focused on comparing drone delivery systems with traditional truck-based deliveries from an emission and sustainability perspective.

Goodchild and Toy (2017) conduct a GIS-based simulation analysis and determine that factors such as distance from depot and

number of recipients affect the relative CO2 emissions of UAVs versus trucks. The authors recommend a mixed drone truck delivery

system. Figliozzi (2017) uses continuous approximation techniques and derive analytical formulas to compare operational and

lifecycle emissions and energy consumptions of UAVs with conventional diesel, electric vans, and tricycle delivery services. Figliozzi

(2017) shows that the delivery strategy (grouping of customers in a route) affects the relative CO2 emission efficiencies.

A substantial amount of literature exists on the maximum covering facility location problem (MCFLP) (Church and ReVelle,

1974). Farahani et al. (2012) and Daskin (2011) provide excellent reviews of different variants of MCFLP and associated solution

strategies. The MCFLPD model considered in this work is a more complicated variant of MCFLP as the coverage is a function of the drone

range which in turns depends on drone availability as well as the payload. The MCFLPD model also has similarities with the Capacity and

Distance Constrained Plant Location Problem (Albareda-Sambola et al., 2009). While Albareda-Sambola et al. (2009) focus on

minimizing cost, the model presented in this work focuses on maximizing coverage. We also explicitly model the distance range con-

straints resulting from the interaction between battery capacity and the demand carried in a trip. Also, Albareda-Sambola et al. (2009)

assume a pre-specified number of trucks are available to each open facility whereas, in our model, we assume that a pre-specified number of

drones are available to the entire system. The additional drone allocation feature adds to the complexity of the formulation.

Otto et al. (2018) provide a detailed review of all optimization based papers on civil applications of drones and UAVs. To the best

of the authors’ knowledge, the MCFLPD model studied in this paper is a novel contribution and the first research to explicitly include

drone energy consumption as a function of payload and distance within a drone maximum coverage location problem framework.

The solution approaches, the case study, and the sensitivity analysis are also novel contributions.

3. Problem formulation

This section presents the integer linear formulation for the MCFLPD. At the beginning of the planning period, an agency is given a

set of demand locations I each having demand wi, a set of potential facility locations J , and set of available fully-charged drones K .
The planning period or time period of analysis is short-term and will depend on the application (for delivery of blood supplies post-

earthquake maybe six hours; for delivery of medicine/food in case of an earthquake maybe one day). The agency’s goal is to locate p
facilities to maximize the demand served. The agency will allocate resource of mass U to each located facility representing the

maximum amount of demand which can be served by each located facility in a planning period.U can be viewed as the capacity of

the facility. The capacity of a facility corresponds to the maximum amount of demand which can be served from that facility in a

period of time. The limiting factor for the capacity in practice would arise from the maximum mass of resources which can be stored

at each facility, equipment and building characteristics, staffing levels, etc. The agency will also assign drones to each open facility.

The facilities serve as drone launching sites for distributing the resources while respecting the facility capacity and drone range

constraints. In this paper, as typical in location problems, we do not consider the cost of transportation of packages and drones from

warehouses to these locations. We assume that this cost is a constant irrespective of the configuration of the located facilities. For

example, in the event of a disaster, the resources as well as drones can be airlifted to each open facility at the beginning of the

planning period. We also assume that the demand during each planning horizon is smaller than the capacity of each drone. If the

demand at a location is higher than the drone carrying capacity, that specific node is split into multiple nodes whose demands are less

than the drone carrying capacity. Similar assumptions have been made in the drone vehicle routing problem literature (Dorling et al.,

2017). Each drone makes several one-to-one trips (facility location to demand point and back) until the battery range B is met as

shown in Fig. 1. We do not model one-to-many deliveries which require vehicle routing. This is consistent with initial applications of

drone deliveries by companies such as Amazon which is focusing on single package deliveries (Amazon, 2018). As we are looking at a
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relatively small time frame, we do not consider recharging of drone batteries during the planning period. We assume that the drone

batteries are recharged overnight or in-between planning periods. The notation used in the formulation is given below.

Fig. 2 shows the demand and potential facility locations used in the case study.

Nomenclature

Sets

I Set of all demand locations

J Set of all potential facility locations

K Set of available drones

Indices

i I –

j J –

k K –

Parameters

Power transfer efficiency

s Lift to drag ratio

B Battery capacity of each drone

bij Battery consumed during one trip between demand i I and facility j J
dij Travel distance between demand point i I and facility j J
mb UAV battery mass

mt UAV mass tare, without battery and load

p Maximum number of facilities

U Capacity of each located facility (same unit as UAV mass tare and battery mass)

wi Demand for resource at location i I (same unit as UAV mass tare and battery
mass)

Decision variables

xijk 1, if customer i is served by the kth drone of plant j J , and 0, otherwise
yj 1, if the facility is located at j J , and 0, otherwise
zjk 1, if the kth drone is assigned to facility j J , and 0, otherwise

w xmax
i I j J k K

i ijk
(1)

x i I1,
j J k K

ijk
(2)

y p
j J

j
(3)

b x Bz j J k K, ,
i I

ij ijk jk
(4)

Fig. 1. Schematic representation of the drone delivery system.
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w x Uy j J,
i I k K

i ijk j
(5)

z y j J k K, ,jk j (6)

z k K1,
j J

jk
(7)

x y z i I j J k K, , {0, 1}, , ,ijk j jk (8)

The objective (1) is to maximize the demand served. Constraint (2) ensures that each demand location is covered at most once. Eq.

(3) restricts the number of facilities located to be less than or equal to p. Constraint (4) enforces battery range constraints on all the
drones. Constraint (5) forces the demand served by each located facility to be less than or equal to the capacity of the facility.

Constraint (6) ensures that vehicles are assigned only to located facilities. Constraint (7) ensures that each drone is assigned to at most

one open facility. Constraint (8) corresponds to variable definition constraints and forces all decision variables to be binary.

The total power consumed in a delivery from facility j J to demand point i I is given as follows Figliozzi (2017):

=
+ +

+
+b m m w d m m d i I j J,ij

t b i

s
ij

t b

s
ji

In this manuscript, we do not consider the impact of charging cycles and weather (wind and temperature) on drone battery

capacity. We assume that B is a point estimate which accounts for the above factors. The uncertainty associated with the daily

capacity will be considered in a future work. Traditional capacitated facility location models consider location of facilities and

allocation of demand points to located facilities. Joint location routing problems consider location of facilities, allocation of demand

points to located facilities, and allocation of demand points to vehicle routes with multiple deliveries per route. The model studied in

this paper, MCFLPD, is a new type of facility location model. In addition to the location allocation feature of traditional facility

location problems, MCFLPD has drone to facility and demand to drone allocation feature while accounting for drone range re-

strictions. The combination of all of these features makes it a computationally complex problem to solve. The MCFLPD is a more

complicated version of the maximum coverage capacitated facility location model which is an NP-Hard problem (Church and

ReVelle, 1974; Daskin, 2011).

Traditionally, facility location decisions are long-term strategic decisions and therefore, computational performance is not that

important. However, in this paper, the location decision is operational in nature. At the beginning of the time period (which is short-

term like a day), an agency will know the demand patterns, weather conditions, etc. and take decisions on where to open facilities

(locate a pre-specified number of fully charged drones and resources of mass U ) and use the drones to deliver the resources to the
demand points. During the next time period, if the weather conditions and demand patterns are similar, then we can use the same

solution. Otherwise, we will have to reoptimize the system quickly and potentially open new facilities and relocate the drones. For

this purpose, we have developed two heuristics which are described next.

4. Solution approach

This section presents two solution techniques to solve the MCFLPD problem - greedy and three-stage heuristic (3SH). The MCFLPD

problem has an inherent complex knapsack structure for which greedy heuristics have been found to be efficient (Loulou and

Michaelides, 1979; Goundan and Schulz, 2007; Kang and Park, 2003; Puchinger and Raidl, 2007). We hypothesized that greedy

heuristic might be effective for tackling MCFLPD which belongs to the same family. The second solution procedure we developed was

a decomposition based three-stage heuristic (3SH). Decomposition heuristics have been found to be useful for problems of this nature

in the literature review (Kim et al., 2017; Yurek and Ozmutlu, 2018; Hong et al., 2018) and in traditional location routing problems

(Wu et al., 2002; Melo et al., 2009). The final step of the 3SH procedure involves a local exchange heuristic which has been found to

be efficient for complex facility location problem variants (Halper et al., 2015). We did explore different Lagrangian Relaxations by

dualizing combinations of capacity, allocation, and drone range constraints. However, the bounds obtained were weak and we did not

further pursue this direction. Similar insights regarding weak Lagrangian Relaxation bounds were found by Halper et al. (2015) in the

context of mobile facility location problem.

4.1. Greedy heuristic

The greedy heuristic has the following steps: (i) creating and sorting a weight matrix, (ii) demand allocation to open facilities, (iii) drone

allocation to open facilities, and (iv) demand assignment to drones. Let ij be an indicator variable which takes value 1 if demand point i is
assigned to open facility j and 0 otherwise. The ij variable is initialized to 0 for all demand points and potential facility locations.

Weight Matrix: A weight matrix wtij, is calculated as:

=wt
b B

i I j J
if

0 otherwise
,ij

w
b ij
i
ij

(9)

A demand and facility location pair with larger weights will have a higher chance of being assigned to each other. The weights are

then sorted in non-increasing order and stored in a weight array. Each element in the weight array will have a demand location i and
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a potential facility location j associated with it. The sorted weight array is traversed sequentially, and the following demand allo-
cation procedures are applied to each entry.

Demand Allocation: If demand i is already assigned to an open facility, move to the next entry in the sorted weight array. If the
demand i is not assigned to any open facility, check if the associated facility j is open. If facility j is open, set = 1ij as long as >wt 0ij
and there is residual capacity available in facility j to serve di. If facility j is not open, open facility j if the number of facilities
currently open is less than p and >wt 0ij and set = 1ij . If facility j is not open and if we have already located p facilities then identify
a facility j among the set of open facilities which has the lowest bij and available capacity and set = 1ij . If we are unable to assign

demand i to an open facility, move to the next element of the sorted weight array. Continue the demand allocation procedure until all
the elements of the sorted weight array with positive weights have been processed.

Drone Allocation: Let J denote the set of all open facilities. The number of drones required to serve all demands assigned is

calculated for each open facility, NDj, as:

=ND
b
B

j Jj
i I

ij ij

Let Jo represent the open facilities sorted in non-increasing order of NDj. Traverse the set Jo and assign one drone to each open
facility sequentially. In the first round, p drones will be assigned. After assigning one drone to all open facilities, go back to the first
facility in Jo and continue assigning one drone to each facility sequentially. If the number of drones assigned to a facility is equal to
the number of drones required NDj, then delete that facility from Jo and continue the drone assignment. Stop the process when all
drones are assigned to open facilities or when the drone requirements of all facilities are met.

Demand to Drone Assignment: For each facility, sort the demand locations in non-decreasing order of battery consumption.

Traverse the sorted demand array sequentially and assign demand locations to the first drone as long as the constraints (determined

by battery consumption) are not violated. Assign the first demand location which violated the drone range constraint of the first

drone to the second drone and continue assigning demands (if the facility has a second drone assigned to it). Repeat until all demands

associated with that facility are assigned to drones or until it is not possible to assign any more demands to the final drone for that

facility without violating the drone range constraint. Repeat the process for all facilities.

The demand coverage can be calculated by adding the demands for all locations which have been served. The greedy heuristic will

ensure the facility capacity and drone range constraints are met.

4.2. Three Stage Heuristic (3SH)

The 3SH heuristic solves the problem in three steps. In the first stage, we solve a facility location problem and determine the

facilities to be located and the demand points to be assigned to each facility. In the second stage, knapsack problems are solved to

assign drones to facilities and demand points to drones. In the third stage, an exchange heuristic is applied to improve the solution.

4.2.1. Facility location and allocation

The following facility location allocation problem is solved to determine the facilities to be located. Let Ji denote the set of
potential facility locations which are within the range of the drone for each demand location i, i.e., =J j b B{ : }i ij . The decision

variables for this optimization formulation are: (i) xij which takes value 1 if demand i I is assigned to facility j J and 0 otherwise,
and (ii) yj which takes value 1 if the facility j is located and 0 otherwise.

w
b
xmax

i I j J

i

ij
ij

i (10)

x i I1,
j J

ij
i (11)

y p
j J

j
(12)

w x U j J,
i I

i ij i
(13)

x y i I j J, ,ij j i (14)

x y i I j J, {0, 1}, ,ij j i (15)

Constraint (11) ensures that each demand point is assigned to at most one of the facilities within flying range. Constraint (12)

enforces that at most p facilities are located. Eq. (13) ensures that the sum of demand assigned to a facility is less than the facility

capacity. Constraint (14) makes sure that each demand point is assigned to located facility only. The objective function maximizes the

weight of assigning demand points to facilities where the weight is defined in Eq. (9). The above formulation is similar to a capa-

citated p-median facility location problem (Daskin, 2011).
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4.2.2. Repeated application of knapsack problems

Let J and Ij denote the set of facilities located and the set of demand locations assigned to each open facility obtained at the end of
the facility location and allocation stage. Note that = =J j J y{ : 1}j and = =I i x{ : 1}j ij . In the second step, we assign drones to

facilities and demand locations to drones by repeatedly solving the maximum profit knapsack problem. For any open facility j J
and drone k K , the maximum profit knapsack problem can be defined as follows:

=C w xmaxj
i I

i i
j (16)

b x B
i I

ij i
j (17)

x {0, 1}i (18)

In the above formulation, the decision variable is xi which takes value 1 if demand i is served by a drone and 0 otherwise. Cj
denotes the optimal objective function (16) value which corresponds to the maximum demand which can be served by a drone at a

facility j from the set of demand locations Ij. Constraint (17) ensures that the demand points assigned to a drone are within the
battery range, i.e., a drone can make one-to-one deliveries to all the assigned demand points without exhausting the battery capacity.

The steps of the second stage of 3SH are described below.

• Solve p maximum profit knapsack problem, one for each facility in J . Let j denote the facility with the maximum value of

C j J,j . Assign the first drone to facility j . Assign the demand locations in I j with =x 1i to the first drone. Update I j by
removing all demand points which have been assigned to the drone.

• Solve the maximum profit knapsack problem for facility j with the new set of demand points I j . Update the value ofCj . Compare

the p knapsack objectives and determine the facility with a maximum value of Cj. Let j denote the facility with the highest

knapsack objective. Assign the second drone to facility j . Assign the demand points in I j with =x 1i to the second drone. Update

I j by removing all demand points which have been assigned to the drone.
• Repeat the above steps until all drones or all demand points have been assigned. The number of repetitions will be at most K 1.
Now we can determine the coverage by adding the demand of all points which have been served.

The second stage involves solving at most +p K 1 maximum profit knapsack problems in total.

4.2.3. r-exchange heuristic

In the third stage, we employ a local exchange heuristic to improve the solution. First, set =J J0 and determine the total demand

served by each facility. The r lowest demand facilities are identified and removed from the set J . The set of open facilities J is then
updated with r facilities which are randomly picked from the remaining +J p r facility locations. Update the =J j J b B{ : }i ij .

Now that we have fixed the open facilities and identified the facilities which can serve each demand location based on the drone

range, the following allocation problem is solved. The allocation formulation shown below, Eqs. (19)–(23), is almost the same as

formulation (10)–(15) with one difference. In the formulation shown below =y j J1j and 0 otherwise and is not a decision

variable. The decision variables are xij which take value 1 if demand i I is assigned to facility j Ji and 0 otherwise.
w
b
xmax

i I j J

i

ij
ij

i (19)

x i I1,
j J

ij
i (20)

w x U j J,
i I

i ij i
(21)

x y i I j J, ,ij j i (22)

x i I j J{0, 1}, ,ij i (23)

Once the allocation problem is solved, the second stage is repeated by solving +p K 1 max profit knapsack problems. If there
was an increase in the total demand served, the current best solution is recorded and J0 is updated to be the new set of open facilities

J . If there was no improvement, the current best solution corresponds to the total demand served by the open facilities J0 and a new
set of r facilities is randomly chosen. This exchange heuristic is run a pre-specified number of times.

5. Numerical analysis

The feasibility of using drones for deliveries is tested on a Portland Metropolitan Area case study. The centroids of ZIP Code

Tabulated Areas (ZCTAs) in the Portland Metro Region are selected as the demand locations for the case study. There are a total of

122 demand locations. The community centers throughout the Portland Metro Area are selected as the potential facility locations
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(refer Appendix A). In our study, the facilities should have adequate space for launching drones as well as storing the resources which

are supplied. Community centers in Portland Metropolitan Area satisfy both criterions and are public facilities. There are a total of

104 potential facility locations in the case study. The demand locations and potential facility location do not overlap. Fig. 2 shows the

demand and potential facility locations used in the case study.

The 122 payloads to be delivered at customer demand points are randomly generated from a discrete uniform distribution ranging

from 1 kg to 5 kg at intervals of 0.25 kg (refer Appendix A). The sum of all demands is 366.5 kg. The capacities of each facilityU are

generated as in Pirkul and Schilling (1989) as shown below:

=U
w
p0.8

i I i

In the above equation, the numerator represents the total demand to be satisfied, and p denotes the number of facilities to be
located. In this study, the number of facilities to be located varies from 5 to 30 in multiples of 5. The travel distance between the

demand and potential facility location is taken to be the Euclidian distance, as drones typically travel in straight lines between two

points. We do not consider the impact of obstacles such as mountains or tall buildings or “no drone zones”(FAA, 2018a) in this case

study. This can be a potential future extension. The following parameters are assumed for the drones unless specified otherwise

(Figliozzi, 2017):

• Power transfer efficiency ( ) 0.66
• Lift to drag ratio ( s) 3.5

• Tare weight 10.1 kg
• Maximum payload 5 kg

• Battery capacity 777W h

• Battery safety factor 1.25 (80% of Maximum Battery Capacity)

All computational runs are conducted on a Windows 10 desktop with Intel Core i7-7700 CPU 3.6 GHz, 4 Core(s), 8 Logical

Processor and 32 GB of RAM.

Fig. 2. Demand and potential facility locations in the Portland Metropolitan Region.
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5.1. Computational efficiency

Computational efficiency of MCFLPD solutions is a key factor in real-world implementations. Initial conditions associated to

customer demands and/or weather conditions (wind direction and speed) may change suddenly and may require a fast global

reoptimization of the MCFLPD with different safety factors (a change in regional weather conditions will affect the energy con-

sumption of all deliveries). A later section describes a sensitivity analysis based on different levels of allowable battery consumption.

The Portland Case Study is solved using the following three methods:

• Gurobi solver using the Python interface. The model is run for a maximum of 7200 sec or until a solution is obtained. Default

parameters are assumed for the Gurobi Solver.

• Greedy Heuristic which is implemented in Python.
• Three Stage Heuristic (3SH): The facility location allocation problem in stage 1 and knapsack problems in stage 2 are solved using

Gurobi. The number of facilities to be exchanged in the third stage is fixed at 2 unless specified otherwise. The exchange heuristic

is run for a maximum of 100 iterations.

The first set of computational runs aim at comparing the computational efficiency of the greedy heuristic and 3SH with the Gurobi

solver for different maximum number of facilities and drone availabilities (see Table 1). Since the facilities to be exchanged are

picked randomly in 3SH, we run 30 instances and report the average, minimum, and maximum computational times as well as

coverage results. We limit the number of facilities to be exchanged in the third stage of 3SH to just two. Coverage for the purpose of

this paper is defined as the percentage of total demand met.

The greedy heuristic achieves 78.01% value of Gurobi on average (Best: 85.9% of Gurobi solution for = =p K5, 40; Worst:
67.36% of Gurobi solution = =p K25, 25). The greedy heuristic provides solutions which are on average within 20% of the best

Gurobi solution but takes a maximum computational time of only 0.6 sec. According to the approximation algorithms literature in

facility location, greedy and approximate algorithm solutions differ from optimal solutions in the worst case by at least 33% (Shmoys

et al., 1997; Jain and Vazirani, 2001). The MCFLPD is a more complex variant of facility location problems. Therefore, we expect the

worst case bounds to be weaker. However, we note empirically that all solutions are well within the worst case bounds for facility

location problems. Gurobi solver successfully finds optimal solutions as resources become abundant (p increases and maximum

Table 1

Comparison of Gurobi solver, Greedy Heuristic, and 3SH.

p K Gurobi Greedy 3SH

Time (sec) Coverage (%) Gap (%) Coverage at 1800 sec (%) Time (sec) Coverage (%) Time (sec) Coverage (%)

S2 Ave Min Max S2 Ave Min Max

5 20 7200 56.4 2.1 56.3 0.1 45.2 1.1 14.7 14.4 15.0 52.7 54.5 53.6 55.1

5 25 7200 61.9 2.0 61.7 0.1 50.3 1.1 15.9 15.6 16.2 58.3 59.5 58.6 60.2

5 30 7200 66.3 1.9 66.2 0.1 55.3 1.1 16.7 16.4 17.1 62.9 63.7 62.9 64.5

5 35 7200 70.2 1.2 69.5 0.1 58.9 1.2 18.3 17.6 22.8 66.5 67.0 66.5 67.9

5 40 7200 72.7 1.6 72.6 0.1 62.5 1.2 18.8 18.2 19.1 69.0 69.9 69.1 70.5

10 20 7200 64.4 2.5 64.4 0.2 48.2 1.1 16.6 16.1 16.9 59.1 61.4 59.8 62.6

10 30 7200 75 3.1 75 0.2 59.8 1.1 18.3 17.9 19.0 67.9 71.5 70.1 72.9

10 40 7200 83.8 1.7 83.8 0.2 67.1 1.1 20.1 19.2 20.8 70.2 78.4 76.3 80.4

15 30 7200 79.7 3.8 79.2 0.2 59.2 1.0 21.9 21.4 22.7 70.3 75.2 73.2 77.2

15 45 7200 90.2 1.7 89.8 0.2 73.1 1.0 24.3 23.4 25.5 74.4 83.9 80.3 86.6

15 60 7200 92.6 1.3 92.5 0.3 73.1 1.0 24.8 23.6 25.7 74.4 85.0 81.2 88.7

20 20 7200 71.2 2.1 71.1 0.3 52.8 1.0 25.1 24.6 25.6 61.7 65.8 63.2 67.5

20 40 7200 90.4 2.4 89.9 0.3 70.7 1.0 28.7 28.1 29.3 77.5 84.2 82.7 85.3

20 60 320 93.8 0.0 NA 0.3 72.2 1.0 30.4 28.6 31.8 78.9 87.2 83.6 90.1

20 80 36 93.8 0.0 NA 0.4 72.2 1.0 30.9 29.6 32.8 78.9 87.5 83.6 91.3

25 25 7200 79.6 3.5 79.5 0.3 53.6 1.0 33.0 32.1 35.0 67.3 71.5 69.2 73.3

25 50 337 93.8 0.0 NA 0.4 71.4 1.0 36.6 35.7 38.3 80.1 88.9 85.2 92.2

25 75 27 93.8 0.0 NA 0.5 71.4 1.0 37.4 36.2 39.0 80.1 88.2 84.2 91.0

25 100 43 93.8 0.0 NA 0.5 71.4 1.0 38.1 36.9 39.5 80.1 89.5 86.1 92.2

30 30 7200 85.3 4.1 84.2 0.3 60.6 1.0 40.3 39.0 41.7 72.9 76.8 74.4 80.2

30 60 23 93.8 0.0 NA 0.5 74.8 1.0 44.3 43.3 45.5 86.2 90.9 88.7 92.8

30 90 31 93.8 0.0 NA 0.6 74.7 1.0 45.1 44.2 46.4 86.2 90.7 88.7 93.0

NA=Not Applicable.

S2=After Step 2.
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available drones increases). Gurobi finds the true optimal solution, within the 2-h runtime limit, in nearly one-third of the cases all of

which have higher than 20 potential facility locations and at least 50 drones.

The average 3SH solutions are nearly 95% of the best Gurobi solutions on average. The best case is when 3SH achieves 96.9% of

Gurobi solution for = =p K5, 20 and = =p K30, 60. In the worst case, 3SH achieves 90% of Gurobi solution for 25 potential

facility locations and 25 maximum number of drones. The 3SH approach is significantly faster than Gurobi; the median reduction in

Table 2

Battery energy consumed per unit of coverage.

p K Gurobi Greedy 3SH

5 20 213.9 205.7 213.3

5 25 234.1 224.7 235.1

5 30 259.3 242.7 257.3

5 35 293.4 266.1 285.4

5 40 310.5 291.9 308.2

10 20 183.7 180.9 178.1

10 30 226.3 217.3 227.1

10 40 274.4 268.1 268.4

15 30 213.7 219.3 208.8

15 45 275.8 277.6 258.1

15 60 347.5 277.6 268.7

20 20 158.4 144.0 149.2

20 40 241.7 233.6 225.7

20 60 329.7 250.1 253.3

20 80 386.3 250.1 253.8

25 25 169.7 165.5 152.9

25 50 274.4 249.1 239.7

25 75 372.2 249.1 240.7

25 100 416.3 249.1 242.6

30 30 180.0 174.4 161.1

30 60 309.5 248.2 227.5

30 90 394.2 248.3 230.7

Fig. 3. Case (i): Gurobi solution ( =p 5 and =K 35).
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computational time is 99.7%. When the r-exchange heuristic is not run, i.e., the heuristic is stopped after repeated applications of the

knapsack problem, the heuristic provides solutions which are on an average within 85.9% of the Gurobi solution with an average

computational time of 1.2 sec. The local search step takes an additional 26 sec on average but helps improve the solution by another

9% making it close to the optimal solution.

Table 2 presents the average energy consumed per percent coverage which is calculated as follows:

=
×Energy/Coverage Average Battery Used Number of Drones Used

Coverage

Table 2 shows that Gurobi is competitive against 3SH when the number of facilities is less, but starts losing edge when p becomes
15 or greater and progressively worsens against 3SH with an increase in p. The effect is also amplified with an increase in K , for the
same p. This shows that 3SH is much more efficient in terms of drone employment to achieve a similar coverage.

5.2. Coverage analysis

In this section, we analyze one scenario with low coverage and one scenario with high coverage: (i) p=5 and K =35with an optimal

coverage of 70.2%, and (ii) p=20 and K =60 with an optimal coverage of 93.8%. Fig. 3 shows the delivery mapping of Gurobi solution

for case (i). The delivery spiders are distinct and do not overlap over one another. The minimum facility utilization is 23.9% of its total

capacity, and the maximum facility utilization is 87.8% of its total capacity. These results indicate that drone battery range capacity is

constraining the coverage. With five facilities, most of the demand locations around the downtown region are covered which is intuitive as

this is the area with the highest density. Coverage is limited in low-density areas, e.g., the Northeast region.

Fig. 4 shows the delivery maps of Gurobi solution with 20 open facility and 60 available UAVs for case (ii). It can also be seen

from the figure that the central region has a lot of overlapping spiders, which suggests that facilities have reached their capacity. The

maximum facility utilization is 100% and the minimum facility utilization is 39.1% of their total capacity. Fig. 5 visualizes the

facilities which have utilized more than 85% of their capacity. Most of the facilities with more than 85% capacity utilization are in the

downtown region. The demand points which are not served in this case are beyond the range of the drone from any community center

and therefore will require improvements in battery capacity (see Table 3). The battery capacity improvements needed to achieve

100% coverage is studied in Section 5.5. The insights obtained are consistent with (Choi and Schonfeld, 2017) on the increased

effectiveness of drone delivery systems in higher demand density regions and Dorling et al. (2017) on the critical nature of batteries.

We also compare the solutions obtained from 3SH and Greedy algorithm with the Gurobi solution. From Figs. 5–7, it can be

Fig. 4. Case (ii): Gurobi solution ( =p 20 and =K 60).
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observed that facilities are more spatially dispersed in the Gurobi solution. The spatial dispersion shrinks a little in the 3SH solution,

and then shrinks significantly in the Greedy solution, confined mostly to dense urban areas. The allocation of facilities is based on the

weight matrix (Eq. (9)). The higher the weight, the greater the priority a facility gets when the demand allocation takes place.

Therefore, if a demand point and a candidate facility location are located close by (resulting in very small values of bij), the weight is
higher. In the central region, the density of both, candidate facility locations and demand points, is much higher. This is evident in

facility location using the Greedy algorithm (ref. Fig. 6), where a majority of its open facilities are concentrated in the central region.

In Figs. 5–7, the size of the stars representing open facilities indicate its capacity usage. It can be observed that the density of facilities

in the central region in Gurobi solution is much lesser and also that, all of the facilities opened there have capacity utilization greater

than 85%. While, in the Greedy solution the facilities are “boxed-in” the urban core which results in very less capacity utilization of

capacities. The capacity utilization in 3SH is much more consistent across facilities compared to Greedy solution. It can also be

noticed that the number of facilities utilizing more than 85% of its capacity significantly reduced for 3SH and Greedy in comparison

to Gurobi. In spite of this, the 3SH solution provides about 95% coverage of the Gurobi coverage.

5.3. Sensitivity to battery safety factor

In the initial set of experiments, the battery safety factor is set to be 1.25 (drones cannot utilize more than 80% of the battery

capacity) to account for weather-related uncertainties, battery usage during take-off and landing, and uncertainties regarding initial

Fig. 5. Case (ii): Gurobi solution highlighting facilities which have greater than 85% utilization ( =p 20 and =K 60). Size of star corresponds to
facility utilization.

Table 3

Summary of unmet demand points for case (ii).

Unmet demand ZCTA Closest facility ID Battery requirement (W h)

97028 56 1118

97049 56 854

97064 23 779

97144 66 750

98610 10 691

98616 2 1624
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battery conditions (Figliozzi, 2017; Microdrones, 2018). The goal of this set of experiments is to study the impact of the variation in

battery safety factor on the coverage. The battery safety factor considered in this analysis include safety factors 10/7.0, 10/7.5, 10/

8.5, and 10/9.0. These correspond to 70%, 75%, 85%, and 90% of the battery capacity respectively. Table 4 presents the average of

percentage deviation of coverage at specified maximum battery utilization (MBU) from the coverage achieved assuming a maximum

battery utilization of 80% across 30 runs.

= ×

=

Percent Deviation
Coverage Coverage

Coverage
100

i

x
i i

i
1

30
80

80

Coveragei80 represents the coverage at 80% maximum battery utilization and Coveragex
i is the coverage at x % maximum battery

utilization in the ith run of 3SH. In general, the effects of having a high battery safety factor (less available energy) are more profound
than the effects of a low battery safety factor (more available energy). As shown in Table 4, the effect of the battery safety factor

decreases marginally as p (the number of open facilities) increases.

5.4. Sensitivity to number of facilities to be exchanged in 3SH

In all the runs completed until now, two facilities (two removed and added) were exchanged in the third step of the 3SH heuristic.

We now vary the number of facilities to be exchanged and study the variation in computational times and improvement in coverage.

The values presented in Table 5 are the average of 30 runs. A 1 facility exchange in 3SH works best when =p 5; a 2 facility exchange
in 3SH works best when =p 10, and a 3 facility exchange in 3SH works best for p 15. No benefits were found when the number of
facilities exchanged was 4 or higher. The runtimes are comparable on average which is expected given that the underlying problem

sizes are not significantly altered by the size of the exchange procedure.

5.5. Sensitivity to changes in battery capacity

This section shows how coverage would improve with changes in the battery capacity of the drone. All instances were solved

using Gurobi. The ideal scenario portrays the improvement in the battery without an increase in the drone tare weight, which may be

possible due to future breakthroughs in the battery technology. The realistic scenario assumes that we can improve the battery

Fig. 6. Greedy solution highlighting facilities which have greater than 85% utilization ( =p 20 and =K 60). Size of star corresponds to facility
utilization.

D. Chauhan et al.



capacity of a drone by adding additional batteries. This results in an increase in drone tare weight which leads to increased battery

consumption for the same amount of distance traveled. The UAV/drone in consideration uses Lithium polymer (LiPo) batteries. It is

reported that the specific energy of LiPo batteries can go up to 275Wh/kg (Amicell, 2018). So, for the realistic case study, the specific

energy is taken to be 255W h/kg with 80% MBU. The analysis is conducted for the case when = =p K20, 60. It is observed that
about 165% increase in the battery capacity is required to achieve full coverage in the ideal case (see Table 6). In the realistic

scenario, this increase is still not sufficient to achieve 100% coverage. This is because, the increase in distance traveled is not as high

as in the ideal case due to the additional battery consumption.

An important conclusion from the sensitivity analysis is that runtime increases substantially as battery capacity increases. This is

likely the result of additional complexity due to the increase of feasible options that must be analyzed by the MIP solver. Hence, the

value of a high quality and yet computationally efficient heuristic like 3SH is likely to increase substantially in the future.

6. Conclusions

This paper presents a novel model denoted MCFLPD for coverage-based capacitated facility location problem with drones by factoring

in real-life UAV battery and weight constraints. MCFLPD is substantially more complex than traditional capacitated facility location

Fig. 7. 3SH solution highlighting facilities which have greater than 85% utilization ( =p 20 and =K 60). Size of star corresponds to facility
utilization.

Table 4

Variation of percent deviation in average coverage with respect to the average coverage achieved at 80% MBU.

p Percent deviation with respect to 80% MBU

70% MBU 75% MBU 85% MBU 90% MBU Range

5 −7.5 −3.5 2.1 4.2 11.8

10 −5.9 −3.9 1.7 4.3 10.3

15 −4.8 −2.1 1.8 3.9 8.8

20 −4.5 −2.0 1.8 4.0 8.5

25 −4.2 −1.7 1.1 3.0 7.3

30 −4.0 −2.3 1.4 3.1 7.2
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problems. As real-world drone-based deliveries have already started being implemented in the field, it is necessary to study facility location

for drones not only for economic purposes but also for social/humanitarian benefit. Drone deliveries tend to be time-sensitive, e.g. medical

supplies, and/or subject to unexpected changes in weather conditions. Hence, solution times are as important as solution quality.

In this research, three solution approaches are presented and compared. A state of the art MIP solver deliver high-quality solutions but

requires unacceptably long running times to find feasible solutions reliably. A greedy algorithm is extremely fast, less than one second on

average, but at the cost of solution quality (nearly 20% coverage loss). The three-stage heuristics (3SH) is based on decomposition and

local exchange principles and on average the 3SH solutions are within 5% of the best Gurobi solutions but require in all cases substantially

less running time (at most 46 sec). The 3SH heuristic achieves this balanced performance by leveraging the problem structure to obtain

solutions with high coverage but also more economical in terms of drone employment and in an appropriate time.

The sensitivity analysis on the battery safety factors suggests that the effects of increasing battery safety are acute. An analysis to

estimate the technological improvement in the battery capacity was also performed. It showed that a breakthrough in battery

technology is required to achieve one hundred percent coverage for the case study considered in this work. It was also demonstrated

that MIP solver (Gurobi) solution times increase substantially as battery technology increases. This result further enhances the value

of an efficient algorithm such as the proposed 3SH heuristic.
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Table 5

Impact of different number of facilities exchanged in 3SH.

p K After Step 2 1 facility exchange 2 facility exchange 3 facility exchange

Coverage Time Coverage Time Coverage Time Coverage Time

(%) (sec) (%) (sec) (%) (sec) (%) (sec)

5 20 52.7 1.1 54.4 15.4 54.5 14.7 53.8 13.5

5 25 58.3 1.1 60.0 16.1 59.5 15.9 59.0 14.3

5 30 62.9 1.1 64.5 17.2 63.7 16.7 63.3 15.1

5 35 66.5 1.2 67.8 18.0 67.0 18.3 66.9 15.9

5 40 69.0 1.2 70.4 18.8 69.9 18.8 69.9 16.6

10 20 59.1 1.1 60.8 15.5 61.4 16.6 61.0 15.7

10 30 67.9 1.1 70.4 17.3 71.5 18.3 71.2 17.2

10 40 70.2 1.1 76.7 18.7 78.4 20.1 78.4 18.5

15 30 70.3 1.0 74.2 20.8 75.2 21.9 75.2 20.5

15 45 74.4 1.1 82.2 22.7 83.9 24.3 84.8 22.4

15 60 74.4 1.1 82.4 22.9 85.0 24.8 86.2 22.7

20 20 61.7 1.1 65.7 24.2 65.8 25.1 66.3 23.4

20 40 77.5 1.1 83.6 27.4 84.2 28.7 84.5 26.2

20 60 78.9 1.1 85.0 28.8 87.2 30.4 88.6 27.3

20 80 78.9 1.1 84.9 29.1 87.5 30.9 88.9 27.4

25 25 67.3 1.1 71.1 31.3 71.5 33.0 72.0 29.4

25 50 80.1 1.1 87.8 35.3 88.9 36.6 90.2 32.2

25 75 80.1 1.1 87.0 35.8 88.2 37.4 89.4 32.3

25 100 80.1 1.1 86.6 36.4 89.5 38.1 90.2 32.3

30 30 72.9 1.1 76.9 38.4 76.8 40.3 77.1 34.2

30 60 86.2 1.1 89.5 42.8 90.9 44.3 91.5 37.0

30 90 86.2 1.1 89.3 43.4 90.7 45.1 91.1 37.0

Table 6

Impact of battery capacity on coverage.

Battery Ideal Realistic

Tare mass Coverage (%) Time (sec) Tare mass Coverage (%) Time (sec)

777 10.1 93.8 410 10.1 93.8 410

1032 10.1 96.7 1233 11.1 95.7 667

1287 10.1 97.4 1204 12.1 97.4 978

1542 10.1 98.7 2212 13.1 97.4 873

1797 10.1 98.7 2557 14.1 97.4 1475

2052 10.1 100 2070 15.1 98.7 1377
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Appendix A. List of demand points and candidate facility locations

See Tables A.7 and A.8.

Table A.7

List of demand points with assumed demand.

ZCTA Latitude Longitude Demand (kg) ZCTA Latitude Longitude Demand (kg)

97014 45.5829 −122.0168 4.50 97023 45.2785 −122.3232 3.75

97019 45.5156 −122.2427 4.00 97027 45.3856 −122.5928 4.50

97024 45.5466 −122.4424 3.25 97028 45.2884 −121.8074 4.75

97030 45.5092 −122.4336 1.75 97034 45.4094 −122.6835 1.50

97060 45.5313 −122.3691 2.75 97035 45.4135 −122.7252 2.75

97080 45.4783 −122.3907 3.75 97038 45.0954 −122.5590 2.25

97201 45.5079 −122.6908 2.00 97042 45.2052 −122.5398 4.25

97202 45.4827 −122.6444 4.50 97045 45.3203 −122.5365 2.25

97203 45.6035 −122.7379 4.75 97049 45.3464 −121.8624 2.25

97204 45.5184 −122.6739 2.25 97055 45.3888 −122.1552 1.25

97205 45.5206 −122.7102 3.25 97067 45.2978 −122.0544 3.25

97206 45.4824 −122.5986 3.75 97068 45.3523 −122.6686 5.00

97208 45.5287 −122.6790 3.25 97070 45.3061 −122.7731 2.25

97209 45.5311 −122.6839 2.25 97086 45.4452 −122.5281 5.00

97210 45.5442 −122.7267 4.75 97089 45.4266 −122.4431 3.00

97211 45.5811 −122.6373 4.25 97222 45.4409 −122.6181 1.25

97212 45.5442 −122.6435 3.50 97267 45.4084 −122.6129 2.00

97213 45.5382 −122.6000 1.25 98601 45.9434 −122.3625 1.75

97214 45.5147 −122.6430 2.50 98604 45.8057 −122.5108 4.00

97215 45.5151 −122.6006 2.75 98606 45.7297 −122.4564 3.75

97216 45.5139 −122.5584 2.75 98607 45.6422 −122.3800 3.00

97217 45.6018 −122.7008 1.75 98629 45.8766 −122.6192 1.75

97218 45.5763 −122.6009 3.25 98642 45.8077 −122.6939 1.75

97219 45.4542 −122.6985 1.25 98660 45.6790 −122.7205 1.50

97220 45.5500 −122.5593 3.25 98661 45.6401 −122.6250 3.75

97221 45.4983 −122.7288 2.50 98662 45.6885 −122.5778 3.00

97227 45.5434 −122.6781 4.50 98663 45.6574 −122.6632 3.00

97230 45.5578 −122.5053 1.25 98664 45.6195 −122.5772 4.00

97231 45.6876 −122.8242 3.25 98665 45.6795 −122.6606 1.50

97232 45.5289 −122.6439 3.50 98675 45.8285 −122.3429 2.50

97233 45.5151 −122.5033 2.00 98682 45.6732 −122.4817 4.50

97236 45.4829 −122.5098 5.00 98683 45.6033 −122.5102 3.25

97239 45.4924 −122.6925 3.25 98684 45.6306 −122.5148 4.00

97266 45.4830 −122.5582 5.00 98685 45.7152 −122.6931 4.75

97004 45.2550 −122.4494 4.75 98686 45.7234 −122.6244 1.25

97009 45.4230 −122.3328 1.75 97016 46.0603 −123.2670 1.75

97011 45.3871 −122.0264 1.25 97018 45.8971 −122.8106 2.75

97013 45.2208 −122.6683 2.00 97048 46.0448 −122.9820 2.75

97015 45.4135 −122.5368 1.25 97051 45.8793 −122.9500 3.75

97017 45.1765 −122.3897 1.50 97053 45.8280 −122.8833 2.75

97022 45.3467 −122.3200 2.25 97054 45.9422 −122.9496 1.25

97056 45.7720 −122.9694 4.50 97116 45.5808 −123.1657 2.00

97064 45.8591 −123.2355 4.00 97117 45.6314 −123.2884 3.00

97101 45.0902 −123.2287 4.25 97119 45.4689 −123.2002 3.25

97111 45.2845 −123.1952 3.75 97123 45.4402 −122.9801 2.75

97114 45.1879 −123.0766 3.75 97124 45.5698 −122.9496 2.25

97115 45.2752 −123.0395 3.50 97125 45.6711 −123.1969 1.75

97127 45.2461 −123.1114 4.25 97133 45.6861 −123.0227 3.50

97128 45.2119 −123.2822 4.25 97140 45.3531 −122.8659 4.50

97132 45.3242 −122.9873 5.00 97144 45.7416 −123.3002 2.25

97148 45.3584 −123.2485 3.75 97223 45.4403 −122.7766 3.75

97347 45.0771 −123.6564 1.50 97224 45.4055 −122.7951 1.75

97396 45.1040 −123.5490 3.75 97225 45.5016 −122.7700 2.00

97005 45.4910 −122.8036 3.25 97229 45.5510 −122.8093 2.00

97006 45.5170 −122.8598 3.25 98605 45.7769 −121.6655 4.25

97007 45.4543 −122.8796 2.00 98610 45.8659 −122.0652 4.75

97008 45.4602 −122.8042 2.25 98616 46.1933 −122.1329 4.75

97062 45.3693 −122.7623 1.75 98639 45.6699 −121.9897 1.75

97106 45.6657 −123.1190 3.75 98648 45.7063 −121.9563 2.75

97109 45.7378 −123.1812 3.00 98651 45.7399 −121.5835 3.50

97113 45.4972 −123.0443 1.50 98671 45.6144 −122.2384 1.50
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.trc.2018.12.001.
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