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Abstract

In this thesis, a maximum flow-based network interdiction problem consider-

ing uncertainties in arc capacities and interdiction resource consumption is solved.

The problem consists of two entities with opposing objectives: the goal of the ad-

versary is to maximize the flow of illicit drugs through the network, while the goal

of the interdictor is to minimize the maximum flow by completely interdicting

arcs given a specified amount of resources. Lack of complete information about

the usage patterns of the transportation network by the adversary results in an

uncertain estimate of arc capacity and resources required for interdiction by the

interdictor. To account for this uncertainty, a robust optimization framework is

utilized, resulting in a Robust Network Interdiction Problem (RNIP).

A novel mixed-integer linear program is proposed that solves the RNIP.

Three heuristics are proposed to solve RNIP, the first based on Lagrangian Re-

laxation, the second based on Benders’ Decomposition, and the third based on

Benders’ Decomposition enhanced using the Lagrangian Relaxation presolve.

Computational experiments show that the third heuristic performs the best with

a final MIP gap of less than 5% and a computational time saving of more than

90% for all the test networks when compared to a state-of-the-art mixed integer

program solver. Sensitivity analyses are performed to identify budgets of uncer-

tainty that provide a realistic estimate of the actual maximum flow using a Monte

Carlo simulation scheme. Finally, robust decisions are compared to decisions not
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accounting for any uncertainty to evaluate the value of robustness. It is found that

robust decisions can provide fairly accurate estimates of possible actual maximum

flows in the network. When the interdiction efforts are significant, robust decisions

also lead to a reduction in actual maximum flows, as much as 78% on average

for a series of test networks, when compared to decisions not accounting for any

uncertainty.
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1 Introduction

1.1 Background and Motivation

Network-based structures are ubiquitous. They exist as transportation networks,

water supply and distribution networks, energy generation, and distribution net-

works, telecommunication networks, biological networks, computer networks, the

internet, etc. Moreover, there are problems where the network-based structure

is not apparent, but they can be visualized and formulated as network-based

problems. Examples of such problems include creating a schedule, allocation of

inspection resources, matrix rounding problems, and many more [Ahuja et al.

(1993)]. The pervasiveness of these network-based structures makes it important

to identify and study the vulnerable connections of a network. The identification

of the most vulnerable arcs (also, links) of a network is a way to evaluate the sig-

nificance of their availability and has applications in different kinds of scenarios.

Some examples include controlling the spread of an infection [Assimakopoulos

(1987)], interdiction of illicit drugs [Steinrauf (1991)], interdiction of enemy re-

sources in a war [Loh (1991)], prioritizing infrastructure improvements [Lu et al.

(2014)], preparing against terrorism threats [Ayyildiz et al. (2018)], etc. More-

over, uncertainties are innate in transportation networks, stemming from human

factors like varied perception of the transportation network due to differences in
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psychological and behavioral attitudes [Arentze and Timmermans (2005)], or built

environment features [Magliocca et al. (2019)], or weather conditions [Lam et al.

(2008), Sumalee et al. (2011)], or other random causes like crashes, making the

identification of the most important arcs more challenging. The overarching goal

of this work is the identification of the vulnerable connections in a network under

uncertainty.

Consider the problem of drug interdiction as an example. Illicit drugs and

the associated criminal organizations pose a significant threat to national secu-

rity, public health, and law enforcement [DEA (2018)]. The increasing presence

of illicit drugs is indicated by the increasing amount of drug seizures by local

enforcement agencies, the increasing usage among the populations, and the in-

creasing amount of mortalities related to drug overdose, in the U.S. and around

the world [DEA (2018), UNO (2018)]. Identifying the most important arcs of the

drug flow network and destroying them would result in a maximum reduction of

drug flow at the demand point in the most efficient manner. However, the intel-

ligence agencies can still only speculate about the criminal organization’s (the

adversary) perception and resulting behavior towards the risk of interdiction. The

current work is a small step towards helping alleviate this problem by modeling

the decision-making process involved in the interdiction of illicit drugs (the com-

modity), from the perspective of a local enforcement agency (the interdictor),

considering uncertainties in arc capacities and resource consumption for interdic-
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tion.

To account for the uncertainty, the decision-maker can either opt for stochas-

tic optimization or robust optimization. In stochastic optimization, the uncer-

tainty is described by a probability distribution, while in robust optimization,

the uncertainty set is deterministic and set-based [Bertsimas et al. (2011)]. In the

stochastic optimization framework, it is often cumbersome to enumerate all pos-

sible scenarios and assign them appropriate weights, or it may not be possible at

all due to insufficient data on the exact variation (i.e. probability distribution) of

parameters involved in the problem. The robust optimization approach benefits

from a low amount of data requirements and independence from the knowledge

of the probability distribution. Only the bounds on the variation of parameters

may be sufficient for the decision-making process in some cases. As the amount of

information on the transportation network of illicit drugs is sparse, it is easier to

estimate the bounds of the network parameters than their exact probability distri-

butions. Therefore, the robust optimization approach is used in the current study.

So as to not reinvent the wheel again, interested readers are referred to Kall et al.

(1994), Nemirovski and Shapiro (2006), and Shapiro et al. (2009) to learn about

various methods in stochastic optimization and programming. The work done by

Ben-Tal et al. (2009), Bertsimas et al. (2011), and Gabrel et al. (2014) serves as a

great reference on the theory and applications of robust optimization. As robust

optimization does not assume any probability information about the uncertainty,
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a whole field of robust optimization which is dedicated to addressing robustness

across different probability distributions. To learn more about the growing field of

distributionally robust optimization refer to Delage and Ye (2010), Goh and Sim

(2010), and Wiesemann et al. (2014).

To understand the role of uncertainty, consider the example transportation

network shown in figure 1.1. Node s refers to the source of the commodity and

node t refers to the destination market for the commodity. The network parame-

ter u refers to the nominal estimated capacity of an arc, and r refers to the nom-

inal amount of resource required to destroy the arc completely. ū refers to the

estimated worst-case capacity of the arc, and r̄ refers to the worst-case amount of

resources required to completely destroy the arc. There are three paths, A, B, and

C, which the adversary uses, and their goal is to maximize the flow of the com-

modity to the destination t. On the other hand, the goal of the interdictor is to

minimize the worst-case availability of drugs at destination t subject to the avail-

ability of limited resources. In the current example, the interdictor has 14 units of

resource available.
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A

B
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Figure 1.1: Motivating capacity and resource consumption uncertainty

If the interdictor does not consider uncertainty, the decision will be based

solely on the nominal values available. In the current case, the interdictor would

decide to interdict paths B and C using 11 units of interdiction resource and the

availability of the commodity at destination t would be 100 units in the nominal

case and 150 units in the worst-case. Now, consider one of the simplest models for

robust optimization in the decision-making process, the worst-case hedge. In the

worst-case hedge model, the decision-maker chooses worst-case values of param-

eters to ensure that the solution protects against all uncertain scenarios. For the

worst-case hedge model, the decision will be based on the worst-case values of ca-

pacity and resource consumption (i.e. ū and r̄). In this case, the interdictor would

decide to interdict paths A and C using all the 14 units of interdiction resource,

and the availability of the commodity at the destination t would be 120 units in

the nominal case and 130 units in the worst-case. Notice that the interdictor is

compromising by allowing 20 extra units of the commodity in the nominal case to
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reduce the worst-case availability by 20 units.

As the size of the network grows, being totally risk-aversive (i.e. the worst-

case hedge model) would lead to a huge increase in the nominal availability of

drugs at the destination, while there will also be a significant reduction in the

worst-case availability of drugs. The bump in the nominal value, as the network

size grows, may not seem like a reasonable compromise, considering the shrinking

likelihood of every network parameter being at their worst simultaneously. What

if a better compromise could be reached by controlling the amount of uncertainty

that is incorporated into modeling? The answer to this is the concept of budgeted

uncertainty, wherein additional constraints are enforced to moderate the amount

of uncertainty considered while modeling.

Consider the network example shown in figure 1.1 again. Now, additional

constraints are enforced so that the interdictor would consider worst-case arc

capacity and resource consumption for interdiction at only one path each (can

be different paths). The updated decision of the interdictor would be to interdict

paths A and B using all of 14 units of resources (worst-case value for path A,

nominal value for path B). The availability of the commodity at the destination

t would be 110 units in the nominal case and 140 units in the worst case. The

summary of the results of drug-availability at the destination t obtained so far is

given in table 1.1.
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Table 1.1: Summary of scenarios considered in the motivating example

Nominal case Worst-case

No uncertainty considered 100 150

Worst-case hedge 120 130

Robust optimization with budgeted uncertainty 110 140

In table 1.1, it can be noticed that the case of robust optimization with bud-

geted uncertainty provides the interdictor with a new compromise which does not

increase the nominal availability of the commodity at destination t as much as the

worst-case hedge approach but provides worst-case protection better than the case

where no uncertainty is considered. The case of budgeted uncertainty, therefore,

provides the decision-maker an avenue to calibrate the amount of risk undertaken

and not be overly pessimistic, while still enjoying the perks of a risk-aversive ap-

proach.

1.2 Applications of Network Interdiction Models

Network interdiction models have garnered a great amount of attention due to its

applicability in a wide range of areas, and also because of its captivating combina-

torial nature. This section elaborates on the applications of network interdiction

problems to further motivate the problem. The first domain of their applications

is to problems related to national security like: warfare [Wollmer (1964), McMas-
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ters and Mustin (1970)]; protecting critical infrastructure [Brown et al. (2006),

Yates and Lakshmanan (2011)]; preparing against terrorism threats [Ayyildiz

et al. (2018)]; intercepting drugs, weapons, and nuclear smuggling [Wood (1993),

Pan et al. (2003), Morton et al. (2007), Nehme and Morton (2009), Malaviya

et al. (2012), Sullivan et al. (2014), Enayaty-Ahangar et al. (2019)]; and protect-

ing electrical power grids from terrorists [Salmeron et al. (2004), Motto et al.

(2005), Salmeron et al. (2009), Arroyo (2010), Ding et al. (2018)].

Network interdiction models are also employed for humanitarian purposes

and improving public health like: protecting electrical power grids from disas-

ters[Yuan et al. (2016)]; flood control [Ratliff et al. (1975)]; control in infection

spread [Assimakopoulos (1987), Nandi and Medal (2016)]; chemical treatment of

toxic waste [Phillips (1993)]; impact of natural disasters on fiber-optic networks

[Neumayer et al. (2015), Neumayer et al. (2015)]; protecting water distribution

systems [Perelman and Amin (2014)]; and routing hazardous materials through

the network [Yates (2013), Kheirkhah et al. (2016)].

Interdiction models can also be used to inform policies at corporations and

local government like: prioritization of infrastructure improvements [Lu et al.

(2014)]; policy for toll control [Borndörfer et al. (2016)]; identifying and pro-

tecting vulnerable facilities [Church et al. (2004), Church and Scaparra (2007),

Scaparra and Church (2008), Lei (2013)]; vulnerability assessment of supply

chains [Scaparra and Church (2008), Gedik et al. (2014)]; monitoring of computer
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networks [Smith and Lim (2008)]; impact of denial-of-service (DoS) attacks on a

network [Fu and Modiano (2019)]; and designing strategies for enhancing security

in cyber-physical systems [Sanjab et al. (2017)].

1.3 Problem Statement and Objectives

This work focuses on modeling interdiction in a maximum flow network while con-

sidering uncertainties in the arc capacities and uncertainties in the consumption of

resources required to interdict an arc. Consider the example of drug interdiction

for motivating the presence of uncertainty arc capacity and resource consumption.

For drug interdiction in a maximum flow network, each arc has two capacities:

first, the physical capacity which is limited by available network infrastructure

(like, numbers of lanes in the road (or the width and depth of a river), quality of

the road (or the amount of obstacles in a river)); and second, the perception of ca-

pacity in the mind of the enemy (or, adversary) which is influenced by the amount

of surveillance and regular patrolling done by the local enforcement agency. While

the prior is relatively easier to determine exactly with high certainty, the latter is

not. Also, in the cases where the second capacity is the limiting factor, a signifi-

cant amount of capacity uncertainty can be observed. The uncertainty in resource

consumption stems from the variation in the number of protection forces sent

by the enemy with the drug flow, and dependence of interdiction resources on

weather conditions, etc.
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It is assumed that the adversary has a practically infinite amount of commod-

ity, money, and other resources available. The primary bottleneck faced by them

is moving their commodity across the network. The objective of the adversary is

to maximize the commodity availability at the destination by maximizing the flow

through the network. Therefore, the objective of the interdictor would be to min-

imize the maximum flow of commodity through the network subject to the total

resources available for interdiction. Similar assumptions have been made in sev-

eral previous network interdiction studies like Wood (1993) and Cormican et al.

(1998).

It is assumed that whenever an arc is interdicted, it is destroyed completely

and immediately, i.e. the capacity drops to zero. The enemy forces can build the

arc back up but that would require time much greater than the planning period of

interdiction.

Currently, it is assumed that a single kind of commodity flows through the

network from a single source to a single sink. However, the problem can be ex-

tended to account for multiple sources and sinks, and special cases of multiple

commodity flow [Wood (1993)].

It is also assumed that only a single kind of resource is required for the inter-

diction of the commodity. However, the problem can be extended to accommodate

choices among different resources required for interdiction or a combination of

resources required for interdiction [Wood (1993)].

10



The model requires the input of network parameters (capacity and interdic-

tion resource consumption for each arc, nominal and maximum deviation values),

the budget of uncertainty for arc capacity variation, the budget of uncertainty

for the variation in interdiction resource consumption, and the total amount of

interdiction resource available. The outcomes of the model include the arc set for

interdiction, and the estimated worst-case maximum commodity flow through the

network, along with the minimum capacity cut and its forward flowing arcs.

The major objectives of this thesis are given as:

1. Formulating the robust network interdiction problem as a mixed-integer

linear program:

Defining the robust network interdiction problem (RNIP) in the context of

illicit drug interdiction as a min-max network flow problem and deriving a

mixed-integer linear program for the same.

2. Developing efficient heuristics to solve the RNIP

For this objective, valid upper bounds are derived for the variables of the

problem. The ‘maximum profit knapsack problem’ is revisited in the con-

text of item weight uncertainty. The above results are used to develop

three heuristics. The first is a Lagrangian Relaxation procedure to solve

the RNIP. The second is a heuristic based on Benders’ Decomposition using

nominal constraints on capacity and interdiction resource consumption de-

rived by exploring the nature of RNIP. It is shown that the Master Problem
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of Benders’ Decomposition has the same complexity as RNIP, and a simul-

taneous penalty heuristic is proposed to solve it. The third is a heuristic

based on Benders’ Decomposition initialized with solution bounds and im-

proved constraints on capacity and interdiction resource consumption found

using the Lagrangian Relaxation procedure. All three heuristics also provide

information on the MIP gap.

3. Computational analyses

Computational analyses are performed to analyze the performance of the

heuristics compared against a state-of-the-art MIP solver. Sensitivity analy-

sis is conducted to find the impact of an increased amount of uncertainty in

the network parameters, and the impact of changes in the budget of uncer-

tainty using a Monte Carlo simulation scheme. This is followed by analyzing

the value of robustness in the decision-making by comparing robust decisions

with decisions not accounting for any uncertainty.

1.4 Organization

The rest of the thesis is organized as follows: Chapter 2 reviews the relevant lit-

erature related to network interdiction models, efficient solution methodologies

for network interdiction, and robust optimization and its applications to network

flow problems. In chapter 3, we model the network interdiction problem consider-

ing uncertainties in capacity and resource consumption as a mixed-integer linear

12



program. In Chapter 4, three heuristics to solve the formulated robust network in-

terdiction problem based on Lagrangian Relaxation, and Benders’ Decomposition

are developed. Chapter 5 examines the performance of the developed heuristics

against a state-of-the-art mixed-integer program (MIP) solver and evaluates the

value of robustness in the existing problem. Sensitivity analysis is also performed

to quantify the impact of uncertainty in parameters, and the impact of budgets

of uncertainty to the actual maximum flows of the network. Finally, Chapter 6

summarizes the contributions of this work and puts forth future directions for

research.
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2 Literature Review

This section reviews the past work done in the area of network interdiction

and computationally efficient solution methodologies that exist for them. Later a

review of robust optimization and its applications in the context of network flow

problems is performed.

2.1 Network Interdiction

The review of the existing literature provides several insights into the network

interdiction problem. Interdiction decisions and movement decisions of commod-

ity or people happen over a base network that belongs to the defender. Most of

these defender networks can be divided into one of the four types: maximum flow

networks, shortest path networks, minimum cost flow networks, and evasion in a

network. These are discussed in greater detail in the following paragraphs.

When the base network is a maximum flow network, the objective of one of

the players is the maximization of the flow from a source to a sink. Loh (1991)

solves single-commodity and multi-commodity network interdiction problem with

different kinds of objectives on networks based on maximum flow and minimum

cut. One of the objectives is to minimize the maximum flow. Steinrauf (1991)
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studies the single commodity network interdiction problem in two contexts, one

of which is minimizing the maximum possible flow of coca, the precursor of co-

caine, in a case-study based on Bolivia’s road and riverine transportation network.

Wood (1993) proves the time-complexity of maximum flow network interdic-

tion problem to be strongly NP-complete (NP: Non-deterministic Polynomial)

and describes various variants and stronger formulations to tighten the linear

relaxation of the integer formulation using valid inequalities. All of the above

works model the “minimize the maximum flow” variant of network interdiction

as a bilevel problem in the attacker-defender setting and dualize it to obtain a

tractable formulation. The attacker-defender setting refers to a Stackelberg game

with two decisions in which the attacker decides to interdict the arcs first and

then, the defender responds optimally. Rocco S. and Ramirez-Marquez (2009)

propose an evolutionary optimization approach, and Granata et al. (2013) propose

a branch-and-price algorithm for solving the deterministic maximum flow net-

work interdiction model. Akgün et al. (2011) extend the maximum flow network

interdiction to a multi-terminal version which aims to maximize flow among the

pre-specified node groups. Cormican et al. (1998) solve the maximum flow inter-

diction model in a stochastic context considering uncertainty in the interdiction

of arcs. Atamtürk et al. (2019) consider stochastic maximum flow network inter-

diction problem with uncertainty in arc capacities and model it using mean-risk

model. Royset and Wood (2007) formulate a bi-objective maximum flow network
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interdiction model to find Pareto-optimal solutions to the objectives of “mini-

mizing the maximum flow” and “minimizing the interdiction cost”. Altner et al.

(2010) provide path-based valid inequalities and find lower bounds on the integral-

ity gaps for the maximum flow network interdiction model, which is extended by

new valid inequalities presented in Afshari Rad and Kakhki (2017). Lunday and

Sherali (2010), Zheng and Castañón (2012a), Zheng and Castanón (2012b), and

Rad and Kakhki (2013) extend maximum flow network interdiction for dynamic

networks.

For the cases when the base network is a shortest path network, the objective

of one of the players is to find and traverse on the shortest path from a source

to a sink. Israeli and Wood (2002) formulate the shortest path network inter-

diction model as a bilevel optimization problem in an attacker-defender setting.

The bilevel problem is dualized to obtain a tractable formulation. Cappanera and

Scaparra (2011) study shortest path interdiction problem with complete fortifi-

cation. They model it as a trilevel problem, and propose an enumeration scheme

and heuristic to solve it. Sadeghi et al. (2017) consider a similar problem but with

partial fortification, and proposes a Benders’ Decomposition framework to solve

it. Wei et al. (2018) consider the shortest path network interdiction problem to

optimize interdiction resource consumption while enforcing a threshold on the

shortest path. They propose Benders’ Decomposition and Lagrangian Relaxation

to solve it. Rocco S. and Ramirez-Marquez (2010) develop a bi-objective shortest
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path network interdiction problem with the objectives of maximizing the length

of the shortest path and minimizing the amount of resources used for interdiction.

They also develop an evolutionary algorithm to solve the problem wherein they

use Monte Carlo simulations to generate strategies, and graph theory to evaluate

the goodness of the strategies. Zhang et al. (2018) propose a stochastic shortest

path problem in which interdiction success is given by a probability. The model

also accounts for multiple sources and sinks. Bayrak and Bailey (2008) extend the

work done by Israeli and Wood (2002) and incorporate information asymmetry in

the shortest path interdiction. It is formulated as a bilevel program which, upon

dualization, results in a mixed-integer nonlinear program (MINLP). The MINLP

reformulation is linearized and solved. Borrero et al. (2015) propose a sequen-

tial shortest path network interdiction problem. In the problem, the adversary

knows the network completely, but the interdictor learns more about the network

structure as the game progresses. Song and Shen (2016) consider the shortest

path network interdiction with uncertainty in travel costs and uses the chance

constraint to model uncertainty. Sefair and Smith (2016), and Xu et al. (2017)

consider the shortest path network interdiction over dynamic networks.

For the minimum cost flow problem as a base network, the objective of one

of the players is the satisfaction of the demands of all nodes at a minimum cost.

Gannon (1989) solves the multi-day minimum cost flow problem subject to in-

terdiction using the dual decomposition method. The problem is formulated
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as a single level decision-making problem and is solved for sparse and planar

graphs. However, their proposed method is also applicable to non-planar and

dense graphs. Lim and Smith (2007) formulate a multicommodity minimum cost

flow network interdiction problem as a bi-level decision-making problem. The bi-

level formulation is set in the attacker-defender context. The discrete interdiction

variant is solved using a penalty-based reformulation which is linear. The con-

tinuous interdiction variant is shown to be a tougher problem than the discrete

version and is solved using an exact partitioning algorithm and a heuristic. Bo-

ginski et al. (2009) consider a robust minimum cost flow under uncertainty in arc

availability and model it by constraining the conditional value-at-risk.

Loh (1991) also puts forth a probabilistic bilevel framework for evasion in

a network. The setting of the problem is as follows: the evader tries to traverse

a network undetected. The interdictor aims to interdict an arc by being present

at an arc to minimize the probability of undetected evasion knowing well the

source and the destination of the evader. This problem is also extended for an

interdiction team versus an evader. However, no solution methodology is pro-

vided. Morton et al. (2007) solve the same problem in a stochastic context. The

stochastic version varies from the deterministic version is only that the informa-

tion on the destination and the source of the evader is unknown. The problem is

solved in a defender-attacker setting. They propose an L-shaped Decomposition

method coupled with valid inequalities for the path-based formulation. However,
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these valid inequalities are only true when at most one interdicted path is tra-

versed on the path. Pan and Morton (2008) generalize valid inequalities proposed

in Morton et al. (2007) for the cases where more than one interdicted arcs are

encountered on the traversed path. Towle and Luedtke (2018) formulate a more

compact version of the formulation proposed in Pan and Morton (2008) which is

much more computationally efficient even when solved in an MIP solver. Yates

and Lakshmanan (2011) provide a constrained binary knapsack approximation

to a similar problem which leads to a significant reduction in the computational

times. They also report some success in the magnitude of arc coverage and show

that the similarity of patterns in the spatial allocation of resources in the approxi-

mation algorithm and exact formulation is statistically significant. Michalopoulos

et al. (2015) propose an evasion model with uncertainty in budget availability for

interdiction and proposes a tabu search heuristic to solve the problem.

Brown et al. (2006) provide bi-level and trilevel optimization formulations for

generalized interdiction models for protecting critical infrastructure. The authors

also solve three real-world case studies and conclude with the importance of opti-

mization models for such scenarios, and the importance of solving till optimality.

The formulations for the bilevel model are available for both the attacker-defender

setting and the defender-attacker setting. In the defender-attacker setting, the de-

fender decides to protect the network with an expectation of a future interdiction

first, and then the attacker interdicts the network. The defender-attacker-defender
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setting was used for the trilevel model. Bertsimas et al. (2016) consider a network

interdiction problem in which the interdictor randomizes the interdiction attempts

rather than choosing the best strategy, which may be more realistic in cases like

protecting critical infrastructure against enemy’s attacks. Recently, Magliocca

et al. (2019) used agent-based modeling with data over 14 years to model the

decision-making of a criminal organization involved in drug trafficking to under-

stand the inadequacies in drug-interdiction operations over time and space.

Though there are a plethora of network interdiction studies performed with

varied objectives on a different type of networks, the current work only focuses

on the interdiction in a maximum flow network with an objective of minimizing

the maximum flows, similar to many of the previous drug interdiction studies.

The current study models drug interdiction as a bilevel problem in an attacker-

defender setting, portraying a proactive approach to interdiction. The current

study also assumes 0-1 interdiction. The arc is destroyed completely when it is

interdicted, and there is no residual capacity. This is in line with several previous

maximum flow network interdiction models [Wood (1993), Cormican et al. (1998),

Bingol (2001)]. In this study, we also provide a formulation to allow discrete

partial interdiction. This formulation can also be used to model the economies

or diseconomies of scale (or a combination of both) in interdiction. In this work,

only single-commodity is assumed to flow through the network.

Refer to Smith and Song (2019) for a recent comprehensive survey on net-
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work interdiction models and algorithms.

2.2 Solution Methodologies for network interdiction

Cormican (1995) solves the deterministic and stochastic maximum flow network

interdiction problems with Benders’ Decomposition based heuristics and reports

significant time savings in comparison to the standard branch-and-bound ap-

proach. Israeli and Wood (2002) solve the shortest path network interdiction

problem using Benders’ Decomposition and a Covering Decomposition method,

both enhanced with super valid inequalities, and report their success over the

branch-and-bound approach. Wood (2010) shows that a generalized network in-

terdiction is a Stackelberg game with two players and two decisions, and can be

formulated as a bilevel mixed-integer program with opposing objectives. The work

also describes a Benders’ Decomposition approach to solve the bi-level network in-

terdiction model. The success of Benders’ Decomposition in the context of network

interdiction motivates its exploration in the current work.

Bingol (2001) solves a deterministic maximum flow network interdiction

model using a Lagrangian Relaxation procedure and reports reasonable success.

Uygun (2002) extends the work done by Bingol (2001) by augmenting the La-

grangian Relaxation by a restricted branch-and-bound procedure and improves

the solution bounds. The new procedure still cannot guarantee a small optimality

gap. Royset and Wood (2007) formulate a bi-objective maximum flow network
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interdiction problem and solve it using a Lagrangian Relaxation scheme enhanced

with cut-enumeration through the branch-and-bound procedure similar to Uygun

(2002). The Lagrangian Relaxation procedure benefits from faster computational

times than the Benders’ Decomposition but cannot guarantee good solutions,

while Benders’ Decomposition benefits in the terms of solution confidence and

quality but the computational experience becomes cumbersome as many sub-

problems need to be solved [Royset and Wood (2007), Cormican (1995)]. Though

the Lagrangian Relaxation based procedure achieved limited success in the afore-

mentioned studies, it is still explored in the current study due to its superiority in

computational times.

2.3 Robust Optimization

While mathematical programming is a powerful tool to help model real-life prob-

lems, it assumes that all the data required for solving the problem is exactly

known. However, uncertainty in data can be present due to some reasons like ig-

norance (like, how much ore is left in a mine), noise (due to measurement errors,

incorrect entries, incomplete data), and unforeseen events (like, future demand

for a product to be released) [Rosenhead (2001)]. A “robust” solution reduces

the optimality in the nominal case to provide flexibility and some hedging against

uncertainty. Therefore, one of the important questions that the decision-maker

has to answer is what the acceptable amount of degradation in optimality is to
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reduce the risk of the infeasibility of solutions [Greenberg and Morrison (2008)].

There are two major schools of thought regarding how to deal with uncertainty:

stochastic optimization and robust optimization. Some of the classical models

based on stochastic optimization include mean-risk model [Markowitz (1952),

Markowitz (1991)], recourse model [Dantzig (1955)], and the chance-constrained

model [Charnes et al. (1958)]. Stochastic optimization is based on the assumption

that one has information about the probability distribution of the uncertainty.

This is not the case when modeling the interdiction of illicit drugs as the amount

of information available about the specifics of a drug network is rather scarce. It

would be easier to estimate the bounds of variation of the network parameters

rather than their probability distributions. Robust optimization allows for ac-

counting uncertainty in a deterministic and set-based manner, and is, therefore,

preferred to solve the network interdiction problem to minimize the maximum flow

subject to uncertainty in capacity and resource consumption. To learn about var-

ious methods in stochastic optimization and programming, interested readers are

referred to Kall et al. (1994), Nemirovski and Shapiro (2006), and Shapiro et al.

(2009).

Some of the common robust optimization models for accounting uncertainty

include worst-case hedge (all uncertain parameters assume worst-case values

[Soyster (1973)]), minimax regret (minimizing the maximum regret), and un-

certainty sets (ellipsoidal uncertainty set [Ben-Tal and Nemirovski (1999), Ben-Tal
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and Nemirovski (2002)], polyhedral uncertainty sets [Bertsimas and Sim (2004),

Bertsimas and Sim (2003)]). The worst-case hedge model is the simplest to solve,

but is overly pessimistic and degrades the optimal values to a large extent to

ensure absolute uncertainty. Minimax regret procedure also allows simplicity in

calculations but is still a lot pessimistic because of its emphasis on worst-case

outcomes and independence with its likelihood of occurrence. The method of ellip-

soidal uncertainty sets helps constrain the uncertainty in the model but the robust

counterpart is nonlinear even when the nominal problems are linear. Polyhedral

uncertainty sets constrain the uncertainty in the model and also has a robust

counterpart which is linear if the nominal problem is linear. Therefore, the cur-

rent study uses polyhedral uncertainty sets for applying robust optimization to the

network interdiction problem to minimize the maximum flow subject to uncertainty

in capacity and interdiction resource consumption. For a more detailed overview

on robust optimization, interested readers are referred to Ben-Tal et al. (2009),

Bertsimas et al. (2011), and Gabrel et al. (2014).

Dews and Kozaczka (1981) describe the lessons learned from interdiction ef-

forts of the U.S. Air Force over three wars, and state that the planned interdiction

activities were too optimistic. The room for uncertainty is a lot because of the

overestimation of the enemy’s supply needs and underestimation of the adaptabil-

ity and flexibility of their transportation systems under attack. Using polyhedral

uncertainty sets in robust optimization would result in a risk-averse approach and
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help with the optimism aspect. However, in the current study, the flexibility of

their transportation system from the adversary’s perspective is considered only

with respect to the capacity of the arcs, and the rest of the transportation system

is assumed to be static (i.e. no existing arcs are completely abandoned, no new

arcs are generated, the source or the destination of the entire operation do not

change, etc.).

Robust optimization using polyhedral uncertainty sets was first introduced

by Bertsimas and Sim (2004). The polyhedral sets incorporate uncertainty by

allowing the sum of relative absolute deviations from the nominal parameter

values in a constraint i to be at most Γi units. The value of Γi can vary between

0 and ni, where ni is the total number of uncertain parameters in the constraint i.

When the value of Γi is ni for all the constraints, then the polyhedral set mimics

the worst-case hedge model. The robust solution is found by determining the

worst-case value of the constraint while satisfying the Γ constraints. The resulting

robust counterpart is said to be Γ-robust (gamma robust) and can be dualized to

obtain a tractable linear formulation.

Several studies incorporate uncertainty in network flow problems. Bertsimas

and Sim (2003) develop the robust minimum cost flow problem and the shortest

path subject to uncertainty in link costs as a discrete optimization problem and

formulate the uncertainty using the gamma robustness paradigm. Boginski et al.

(2009) present a robust minimum cost flow network interdiction model considering
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uncertainties in interdiction probability as a linear program. The authors describe

a set of failure scenarios of arc interdiction failures as in Cormican et al. (1998)

and describe the conditions on the size of the failure scenario set for which the

problem would be polynomially solvable. Ordóñez and Zhao (2007) study mini-

mum cost flow problem under capacity expansion considering uncertainty in de-

mands and travel costs. They solve the problem by employing robust optimization

using ellipsoidal uncertainty sets. Minoux (2010) shows that the min-cost capacity

expansion problem considering capacity uncertainty when solved using polyhedral

uncertainty sets is a strongly NP-hard problem. Han et al. (2014) model a max-

imum flow problem for a network with uncertain arc capacities in the context of

uncertainty theory. Chaerani and Roos (2007) formulate a robust maximum flow

problem considering uncertainty in arc capacities using an ellipsoidal uncertainty

set. Bertsimas et al. (2013) define robust and adaptive flows for a maximum flow

network considering uncertainty in arc availability (similar to arc interdiction).

They use polyhedral sets to restrict the maximum number of arcs that can be

unavailable. They also prove that the adaptive maximum flow is always less than

or equal to the maximum flow obtained after deterministic interdiction [Wood

(1993)]. Minoux (2009) considers a robust maximum flow problem under capacity

uncertainty. When uncertainty is accounted for using polyhedral uncertainty sets,

Minoux (2009) shows that the problem is strongly NP-hard. Because interdiction

is considered in the current study, the worst-case outcome considered in Minoux
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(2009) is different from the one considered here. Additionally, this study also con-

siders uncertainty in resource consumption, which makes this problem at least as

hard as the one considered in Minoux (2009). Therefore, the network interdiction

problem to minimize the maximum flow subject to uncertainty in arc capacity and

resource consumption is strongly NP-hard.

To the best of the author’s knowledge, the problem considered here, the net-

work interdiction problem with the objective of minimizing the maximum flow

considering uncertainty in arc capacity and interdiction resource consumption, is

unique. This study also provides a novel mixed-integer linear formulation to solve

the problem incorporating robustness using polyhedral uncertainty sets. Three

efficient heuristics based on Lagrangian Relaxation, Benders’ Decomposition, and

their combination are developed to improve computational times while providing

quality solutions. The computational superiority of the developed heuristics is

shown by competing them against a state-of-the-art solver on 31 test networks.

An analysis to evaluate the performance of RNIP under various levels of un-

certainty in the network parameter is carried out. A unique sensitivity analysis

is conducted to identify the budgets of uncertainty which perform best using a

Monte Carlo simulation scheme. Finally, an analysis to compare the robust de-

cisions to the decisions not considering uncertainty is performed to evaluate the

value of considering robustness.
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3 Problem Description and Formulation

In this chapter, the robust network interdiction problem considering uncer-

tainties in arc capacity and interdiction resource consumption (RNIP) is modeled.

RNIP is formulated as a bilevel model in the attacker-defender framework. Before

formulating RNIP, a brief problem description, model assumptions and the neces-

sary nomenclature for the problem are presented. Later, the bilevel RNIP model

is reformulated as a mixed-integer linear program in two ways. The chapter ends

by formulating a few extensions of the current RNIP model.

3.1 Problem Description

The maximum flow network interdiction problem consists of two entities. The ad-

versary wishes to transport as much quantity of commodity through the network

as possible to maximize the commodity availability at a destination, while the

interdictor wishes to interdict (or destroy) as many arcs in the network to mini-

mize the commodity availability at the destination. Therefore, RNIP consists of

two players and two decisions; the interdictor moves first and decides the arcs to

interdict, whereas the adversary moves seconds, and maximizes the flow through

the network.
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The interdictor has complete information only about the objective of the ad-

versary (i.e. the adversary tries to maximize the commodity availability at the

destination), and the layout of the network including the source and the destina-

tion. However, the interdictor does not have complete information about the arc

capacities of the network and the resource consumption required for interdiction,

and therefore, these are the sources of uncertainty. It is assumed that the interdic-

tor can estimate the arc capacities of the network using their current intelligence

available about the adversary, and the demand patterns at the destination, and

come up with nominal values for arc capacities and the maximum deviation from

nominal values possible. Similarly, the interdictor determines the nominal resource

consumption and the maximum deviation possible for the interdiction of each arc

using the current intelligence available about the adversary.

The interdictor has a limited amount of resources available for interdiction.

Based on the perception of the credibility of the information, the interdictor opts

for using certain budgets of uncertainty for variation in arc capacity, and variation

in resource consumption for interdiction. Using the above information, the inter-

dictor wishes to determine a strategy to designate resources for interdiction in a

network to minimize the maximum flow achievable by the adversary.
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3.2 Model Assumptions

As RNIP is closely related to the deterministic network interdiction problem

(DNIP) [Wood (1993)], many of the assumptions made in DNIP are also valid

here. Assumptions involved in DNIP are detailed in Loh (1991). First, only com-

plete interdiction is allowed, i.e., if the arc is interdicted, then it is completely de-

stroyed and capacity drops to zero. Second, the arcs are assumed to be destroyed

instantaneously once they are interdicted. The enemy can build the infrastruc-

ture back up, but it would require time much greater than the planning period

considered for RNIP. Third, the arcs function independently, i.e. the destruction

of an arc does not affect the performance of other arcs. Fourth, the nodes of the

network are assumed to be uncapacitated. Capacity can be added to a node n by

splitting it into two uncapacitated nodes n1 and n2, and connecting them by a ca-

pacitated arc. Fifth, only one commodity flows through the network. Sixth, there

is only a single source and a single destination in the network. The problem can

be generalized for handling multiple sources and multiple destinations by connect-

ing all sources to a super-source and all the destinations to a super-sink by infinite

capacity non-interdictory arcs. It is also assumed that apart from arc interdiction,

the structure of the network does not change in the game (i.e., no arcs are volun-

tarily abandoned, no new arcs are formed, the sources and the destinations do not

change, etc.) which is implicitly assumed in most of the previous works.
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The underlying non-restrictive assumptions about the maximum flow prob-

lem detailed by Ahuja et al. (1993) are also followed here. First, the network is

assumed to consist only of directed arcs. Second, all the arc capacities are non-

negative integers. Third, there is no path from the source to the sink that consists

only of arcs with infinite capacity. Fourth, whenever an arc from node i to node j

exists, the arc from node j to node i also exists. Fifth, there are no parallel arcs

in the network (i.e., no multiple arcs from node i to node j). For generalizing the

above assumptions, refer to Chapter 6 in Ahuja et al. (1993).

3.3 Nomenclature

Sets

N Set of all nodes

A Set of all arcs

A′ Set of all arcs plus the artificial return arc, i.e. A′ = A ∪ (t, s)

FSi Forward star set of node i, i.e. set of arcs with their tails at node i

RSi Reverse star set of node i, i.e. set of arcs with their heads at node i

Indices

(i, j) ∈ A, A′, FSi, RSi

i, j ∈ N
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Decision Variables

xij Flow through the arc (i, j)

δij 1, if the arc (i, j) is interdicted; 0, otherwise

γij 1, if the arc (i, j) assumes worst-case capacity; 0, otherwise

πij
1, if the arc (i, j) requires worst-case resource consumption for

interdiction; 0, otherwise

Parameters

s Source node

t Sink node

uij Nominal capacity of arc (i, j)

ûij
Maximum deviation from the nominal capacity of arc (i, j), i.e. actual

capacity lies in the interval [uij − ûij, uij + ûij]

rij Nominal amount of resource required to interdict arc (i, j)

r̂ij

Maximum deviation from the nominal amount of resource required to

interdict arc (i, j), i.e. the actual resource required to interdict arc

(i, j) lies in the interval [rij − r̂ij, rij + r̂ij]

∆ Maximum amount of resource available for interdiction of arcs

Γ The budget of uncertainty for considering robustness in capacity

Π
The budget of uncertainty for considering robustness in resource

consumption
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3.4 Formulation

MODEL 1: min
δ

max
γ,π

h(δ, γ) (3.4.1)

∑
(i,j)∈A′

(rij + r̂ijπij)δij ≤ ∆ (3.4.2)

∑
(i,j)∈A′

πij ≤ Π (3.4.3)

∑
(i,j)∈A′

γij ≤ Γ (3.4.4)

δij, γij, πij ∈ {0, 1} ∀ (i, j) ∈ A′ (3.4.5)

where, h(δ, γ) = max
x

xts (3.4.6)∑
(i,j)∈FSi

xij −
∑

(j,i)∈RSi

xji = 0 ∀ i ∈ N (3.4.7)

xij ≤ (uij + ûijγij)(1− δij) ∀ (i, j) ∈ A′

(3.4.8)

xij ≥ 0 ∀ (i, j) ∈ A′ (3.4.9)

MODEL 1 represents a bilevel network interdiction problem considering un-

certainties in arc capacity and resource consumption, or simply, robust network

interdiction problem (RNIP). The goal of the objective function in equation 3.4.6

is to maximize the flow through the given network from source s to sink t. This

total flow is then sent back to the source s from sink t through the artificial in-
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finite capacity non-interdictory arc (t, s). Thus, flow through artificial arc (t, s)

represents the total flow from source s to sink t. Constraint 3.4.7 represents the

flow balance constraints across all nodes (N). Constraint 3.4.8 ensures that the

flow through an arc does not exceed its realized capacity. Constraint 3.4.9 ensures

flow in all the arcs are non-negative.

Objective function in equation 3.4.1 minimizes the achievable maximum

flow from equation 3.4.6 by interdicting arcs while maximizing the robustness.

Maximizing robustness leads to an increase in the maximum flow which is the

worst-case scenario from the perspective of the local law enforcement agency, and

therefore, the objective is maximized with respect to variables γ and π. Con-

straint 3.4.2 ensures that no more than available interdiction resource is used.

Constraints 3.4.3 and 3.4.4 ensure that no more than the desired level of inter-

diction resource consumption robustness and capacity robustness are achieved,

respectively. Constraints 3.4.5 forces the interdiction, capacity variance variables,

and interdiction resource consumption variance variables to be binary. Here, the

worst-case capacity is assumed to be the upper bound of the variation range, i.e.

more flow is possible through the arc than expected. The worst-case resource

consumption is also the upper bound of the range of variation, i.e. the resource

consumption is more than expected, as it would lead to increased maximum flow.

MODEL 1 represents a bi-level decision-making by two entities. Equations 3.4.1-

3.4.5 represent the decision-making problem of the interdictor, i.e. maximizing
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the robustness while minimizing the maximum flow, and the equations 3.4.6-3.4.9

represent the decision-making of the adversary which is to maximize the flow. In

its present form, MODEL 1 can not be directly solved. MODEL 1 can be refor-

mulated into a solvable state in two ways: first, by directly dualizing it in two

stages to obtain the final form, and second, by realizing the deterministic network

interdiction problem in its structure and then adding the robustness in two stages.

Both ways are described in the following sections.

3.4.1 Dualizing in two stages

To solve MODEL 1, it is first dualized with respect to the variables x, and then

with respect to variables γ and π. The dualization of the variables in two stages

as the variable γ can only be dualized after performing the dual on the variable x.

The result of dualizing with respect to x (the flow variable) yields RNIP modeled

over a minimum cut problem instead of a maximum flow problem. The formula-

tion is given as:

min
δ,α,ε

max
γ,π

∑
(i,j)∈A′

(uij + ûijγij)(1− δij)εij (3.4.10)

∑
(i,j)∈A′

(rij + r̂ijπij)δij ≤ ∆ (3.4.11)

∑
(i,j)∈A′

πij ≤ Π (3.4.12)

∑
(i,j)∈A′

γij ≤ Γ (3.4.13)
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αi − αj + εij ≥ 0 ∀ (i, j) ∈ A (3.4.14)

αt − αs + εts ≥ 1 (3.4.15)

δij, γij, πij ∈ {0, 1} ∀ (i, j) ∈ A′ (3.4.16)

αi ∈ (−∞,∞) ∀ i ∈ N (3.4.17)

εij ≥ 0 ∀ (i, j) ∈ A′ (3.4.18)

The variable α is the dual variable associated with equation 3.4.7, and the

variable ε is the dual variable associated with equation 3.4.8. The variable α

physically signifies the minimum cut of the network, dividing the network into two

sets of nodes: Ns (the set of nodes containing the source node s) and Nt (the set

of nodes containing the sink node t). Therefore, the variable α can be considered

as a binary variable, with all nodes in Ns assuming the value 0 and all the nodes

in Nt assuming the value 1. The variable ε physically signifies the forward arcs

of the minimum cut of the network. As seen in the objective function 3.4.10, the

product (uij + γijûij)(1 − δij) is essentially the capacity of the arc. Therefore,

the maximum possible value of the variable ε is 1. Now, ε can also be considered

as a binary variable, with the value 1 assigned to all forward flowing arcs of the

min-cut, and 0 otherwise, without the loss of generality.

The product of two binary variables (1−δij)εij can replaced by a new variable

βij along with the constraint εij ≤ δij + βij, as in standard linearization of binary
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variables. Wood (1993) proves that the inequality constraint can be changed to

εij = βij + δij, without the loss of optimality. Now, the variable β physically

signifies the forward arcs of the min-cut that are not interdicted. After adding the

above changes, the updated formulation is given as:

min
δ,α,β

max
γ,π

∑
(i,j)∈A′

uijβij +
∑

(i,j)∈A′

ûijβijγij (3.4.19)

∑
(i,j)∈A′

rijδij +
∑

(i,j)∈A′

r̂ijδijπij ≤ ∆ (3.4.20)

∑
(i,j)∈A′

πij ≤ Π (3.4.21)

∑
(i,j)∈A′

γij ≤ Γ (3.4.22)

αi − αj + βij + δij ≥ 0 ∀ (i, j) ∈ A (3.4.23)

αt − αs + βts + δts ≥ 1 (3.4.24)

δij, γij, πij, βij ∈ {0, 1} ∀ (i, j) ∈ A′ (3.4.25)

αi ∈ {0, 1} ∀ i ∈ N (3.4.26)

In equation 3.4.19, the first term is the nominal capacity of a cut in the net-

work and the second term is the increase in the cut capacity because of capacity-

robustness consideration. Similarly, in equation 3.4.20, the first term and the

second term refer to nominal resource consumption for interdiction and the extra

resource consumption required for interdiction, respectively. If the values of pa-

37



rameters Π and Γ are considered to be zero, the model represents DNIP proposed

in Wood (1993). Thus, the above formulation represents a DNIP integrated with

arc capacity robustness and resource consumption robustness. The equation 3.4.24

can be eliminated by assigning values to all the variables involved as αs = 0,

αt = 1, βts = 0, and δts = 0 [Bingol (2001)]. Now, the variables γ and π are dual-

ized. The objective function for the γ variable is the second term of the equation

3.4.19, and its related constraints are equations 3.4.22 and 3.4.25. For dualizing

the variable π, the objective function in π can be considered to be the maximiza-

tion of the second term on the left hand side (LHS) of the equation 3.4.20, as it

would lead to the increase in the overall objective function (i.e. increase in the

minimum cut capacity of the network) which is the worst-case scenario in consid-

eration. The related constraints to the variable π are equations 3.4.21 and 3.4.25.

As the variables γ and π are binary, the dual is performed on its linear relaxation.

The optimality can be preserved by using bΓc and bΠc whenever Γ and Π are not

non-negative integers. After performing dualizations with respect to variables γ

and π, the final formulation is given as:

MODEL 2: min
α,β,δ,µ,θ,σ,ζ

 ∑
(i,j)∈A′

uijβij

+

 ∑
(i,j)∈A′

µij

+ Γθ (3.4.27)

 ∑
(i,j)∈A′

rijδij

+

 ∑
(i,j)∈A′

σij

+ Πζ ≤ ∆ (3.4.28)

µij + θ − ûijβij ≥ 0 ∀ (i, j) ∈ A′ (3.4.29)
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σij + ζ − r̂ijδij ≥ 0 ∀ (i, j) ∈ A′ (3.4.30)

αi − αj + δij + βij ≥ 0 ∀ (i, j) ∈ A (3.4.31)

αs = 0, αt = 1, δts = 0, βts = 0 (3.4.32)

αi ∈ {0, 1} ∀ i ∈ N (3.4.33)

δij, βij ∈ {0, 1} ∀ (i, j) ∈ A′ (3.4.34)

µij, σij ≥ 0 ∀ (i, j) ∈ A′ (3.4.35)

θ, ζ ≥ 0 (3.4.36)

The dual variables θ and ζ are associated with equations 3.4.22 and 3.4.21,

respectively. The dual variables µ and σ are associated with the linear relaxation

of the binary variables γ and π, respectively, in equation 3.4.25. Equation 3.4.32

replaces the equation 3.4.24 from the previous formulation stage. MODEL 2 is,

in fact, a modified dual of MODEL 1, and still represents RNIP which is now a

mixed-integer linear program.

3.4.2 Realizing the deterministic problem and adding robustness

MODEL 1 is re-written as a bi-level problem by splitting the robustness and in-

terdiction decisions instead of splitting it by decision-making entities. This reveals

a different second-level problem, to which robustness can be added separately
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(detailed later in the section). This change can be mathematically represented as:

max
γ,π

g(γ, π) (3.4.37)

∑
(i,j)∈A′

γij ≤ Γ (3.4.38)

∑
(i,j)∈A′

πij ≤ Π (3.4.39)

γij, πij ∈ {0, 1} ∀ (i, j) ∈ A′ (3.4.40)

where, g(γ, π) = min
δ

max
x

xts (3.4.41)∑
(i,j)∈A′

r̃ijδij ≤ ∆ (3.4.42)

∑
(i,j)∈FSi

xij −
∑

(j,i)∈RSi

xji = 0 ∀ i ∈ N (3.4.43)

xij ≤ ũij(1− δij) ∀ (i, j) ∈ A′ (3.4.44)

δij ∈ {0, 1} ∀ (i, j) ∈ A′ (3.4.45)

xij ≥ 0 ∀ (i, j) ∈ A′ (3.4.46)

where, ũij = (uij + ûijγij) and r̃ij = (rij + r̂ijπij). g(γ, π), the second level

of the problem, essentially represents a deterministic network interdiction problem

(DNIP) [refer Wood (1993) for DNIP] subject to updated capacity ũ and updated

interdiction resource consumption r̃ij which are dependent on decisions made in

first level (equations 3.4.37-3.4.40) of the problem. Equations 3.4.37-3.4.40 repre-

sent a robustness maximization problem in variables γ and π. As the variables γ
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and π are independent in the first level maximization problem, the problem can

be rewritten as a bilevel problem of first determining the variable γ and then,

determining the variable π, or vice versa, resulting in a trilevel problem overall.

Therefore, solving RNIP directly is equivalent to adding capacity robustness and

resource consumption robustness, irrespective of the order, to a DNIP. So, we

first focus on solving the DNIP using nominal capacity u and nominal resource

consumption r. Later, capacity robustness and resource consumption robustness

are added to reformulate MODEL 1 in a format such that it can be solved. To

solve the min-max objective function of DNIP, the dual is performed on variable x

which leads to a deterministic minimum cut network interdiction problem, given

as:

min
δ,α,ε

∑
(i,j)∈A′

uij(1− δij)εij (3.4.47)

∑
(i,j)∈A′

rijδij ≤ ∆ (3.4.48)

αi − αj + εij ≥ 0 ∀ (i, j) ∈ A (3.4.49)

αt − αs + εts ≥ 1 (3.4.50)

αi ∈ (−∞,∞) ∀ i ∈ N (3.4.51)

εij ≥ 0 ∀ (i, j) ∈ A′ (3.4.52)

δij ∈ {0, 1} ∀ (i, j) ∈ A′ (3.4.53)
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where, variable α represents the cut of the network by dividing it into two

sets of nodes Ns (the set of nodes containing the source node s) and Nt (the set

of nodes containing the sink node t). α is the dual variable associated with con-

straint 3.4.43. The variable ε represents the forward arcs of the cut and is the

dual variable associated with constraint 3.4.44. It can be noticed that the objec-

tive function (constraint 3.4.47) of the min-cut network interdiction problem is

non-linear. Wood (1993) modified the min-cut network interdiction problem to

linearize the objective function, and proved that resulting new variable (which,

we call β) and α can be assumed to be binary without the loss of optimality. This

Modified Min-cut Network Interdiction Problem (MMNIP) is given as:

min
α,β,δ

∑
(i,j)∈A′

uijβij (3.4.54)

∑
(i,j)∈A′

rijδij ≤ ∆ (3.4.55)

αi − αj + δij + βij ≥ 0 ∀ (i, j) ∈ A (3.4.56)

αt − αs + δts + βts ≥ 1 (3.4.57)

αi ∈ {0, 1} ∀ i ∈ N (3.4.58)

δij, βij ∈ {0, 1} ∀ (i, j) ∈ A′ (3.4.59)

The decision variables for the MMNIP problem are:

δij : 1 if arc (i, j) is interdicted; 0 otherwise
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αi : 1 if i ∈ Nt, 0 otherwise (The cut in the network is represented as (Ns, Nt))

βij : 1 if (i, j) is a forward arc of the cut and not interdicted; 0 otherwise

The objective of the MMNIP, as shown in equation 3.4.54, is to find a mini-

mum capacity cut of a network subject to interdiction. Bingol (2001) eliminates

the equation 3.4.57 by assigning values as αt = 1, αs = 0, βts = 1, and δts = 0.

Capacity robustness is now added to the MMNIP problem, which results

in the Capacity-Robust Min-Cut Network Interdiction Problem (CRMCNIP).

CRMCNIP is given as:

min
α,β,δ

max
γ

∑
(i,j)∈A′

(uij + ûijγij)βij (3.4.60)

∑
(i,j)∈A′

γij ≤ Γ (3.4.61)

∑
(i,j)∈A′

rijδij ≤ ∆ (3.4.62)

αi − αj + δij + βij ≥ 0 ∀ (i, j) ∈ A (3.4.63)

αs = 0, αt = 1, δts = 0, βts = 0 (3.4.64)

αi ∈ {0, 1} ∀ i ∈ N (3.4.65)

γij, δij, βij ∈ {0, 1} ∀ (i, j) ∈ A′ (3.4.66)

CRMCNIP is achieved by replacing the nominal capacity terms with the

worst-case capacity terms and adding a constraint to adjust the level of robustness
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(note that equation 3.4.61 is the same as equation 3.4.4) to MMNIP formulation.

The objective function (equation 3.4.60) has a maximization with respect to the

variable γ because it would lead to an increase in the maximum flow which is the

worst-case scenario for RNIP. However, the above formulation can not be solved

directly. CRMCNIP is updated by taking a dual with respect to the variable

γ to achieve a minimization across all terms. While dualizing, the variable γ is

linearized over [0,1]. Optimality of the solution is conserved by assuming Γ to be

a non-negative integer, or by replacing it with bΓc. The resulting modified dual of

CRMCNIP is given as:

min
α,β,δ,µ,θ

 ∑
(i,j)∈A′

uijβij

+

 ∑
(i,j)∈A′

µij

+ Γθ (3.4.67)

∑
(i,j)∈A′

rijδij ≤ ∆ (3.4.68)

µij + θ − ûijβij ≥ 0 ∀ (i, j) ∈ A′ (3.4.69)

αi − αj + δij + βij ≥ 0 ∀ (i, j) ∈ A (3.4.70)

αs = 0, αt = 1, δts = 0, βts = 0 (3.4.71)

αi ∈ {0, 1} ∀ i ∈ N (3.4.72)

δij, βij ∈ {0, 1} ∀ (i, j) ∈ A′ (3.4.73)

µij ≥ 0 ∀ (i, j) ∈ A′ (3.4.74)

θ ≥ 0 (3.4.75)
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In the above formulation (equations 3.4.67 - 3.4.75), θ is the dual variable

associated with equation 3.4.61 and µij is the dual variable associated to lineariza-

tion of γij in equation 3.4.66. The first term of the objective function 3.4.67 is

representative of the nominal capacity of the min-cut after interdiction, while the

sum of the second and the third terms is representative of the additional capacity

of the min-cut by considering capacity robustness. Adding resource consumption

robustness to the modified dual of CRMCNIP results in capacity and resource

consumption robust min-cut network interdiction problem, or simply, our original

robust network interdiction problem (RNIP):

min
α,β,δ,µ,θ

max
π

 ∑
(i,j)∈A′

uijβij

+

 ∑
(i,j)∈A′

µij

+ Γθ (3.4.76)

∑
(i,j)∈A′

(rij + r̂ijπij)δij ≤ ∆ (3.4.77)

µij + θ − ûijβij ≥ 0 ∀ (i, j) ∈ A′ (3.4.78)∑
(i,j)∈A′

πij ≤ Π (3.4.79)

αi − αj + δij + βij ≥ 0 ∀ (i, j) ∈ A (3.4.80)

αs = 0, αt = 1, δts = 0, βts = 0 (3.4.81)

αi ∈ {0, 1} ∀ i ∈ N (3.4.82)

δij, βij, πij ∈ {0, 1} ∀ (i, j) ∈ A′ (3.4.83)

µij ≥ 0 ∀ (i, j) ∈ A′ (3.4.84)

θ ≥ 0 (3.4.85)
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The objective function 3.4.76 is maximized with respect to π as it would lead

to an increase in the maximum flow of the network, which is the worst-case sce-

nario for RNIP. Note that equations 3.4.77 and 3.4.79 are the same as equations

3.4.2 and 3.4.3. However, the formulation can not be solved in its current form.

The variable π is dualized in the same way the variable γ was dualized. Let, σij

be the dual variable associated with the linearization of π in equation 3.4.83, and

ζ be the dual variable associated with the equation 3.4.79. The objective function

for dualization of π can be considered to be the maximization of the second term

on the LHS of the equation 3.4.77, as it would lead to an increase in the capacity

of the minimum cut of the network. Non-integer values of the parameter Π are

replaced by bΠc for conserve optimality while linearization. After dualizing, the

resultant formulation is given as:

MODEL 2: min
α,β,δ,µ,θ,σ,ζ

 ∑
(i,j)∈A′

uijβij

+

 ∑
(i,j)∈A′

µij

+ Γθ (3.4.86)

 ∑
(i,j)∈A′

rijδij

+

 ∑
(i,j)∈A′

σij

+ Πζ ≤ ∆ (3.4.87)

µij + θ − ûijβij ≥ 0 ∀ (i, j) ∈ A′ (3.4.88)

σij + ζ − r̂ijδij ≥ 0 ∀ (i, j) ∈ A′ (3.4.89)

αi − αj + δij + βij ≥ 0 ∀ (i, j) ∈ A (3.4.90)

αs = 0, αt = 1, δts = 0, βts = 0 (3.4.91)
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αi ∈ {0, 1} ∀ i ∈ N (3.4.92)

δij, βij ∈ {0, 1} ∀ (i, j) ∈ A′ (3.4.93)

µij, σij ≥ 0 ∀ (i, j) ∈ A′ (3.4.94)

θ, ζ ≥ 0 (3.4.95)

In equation 3.4.87, the first term on the LHS is the nominal resource con-

sumption for interdiction, and the sum of the second and third terms is the

additional resource consumption due to the robustness considered in resource

consumption. MODEL 2 is a modified dual of MODEL 1 and is written as a

mixed-integer linear program.

3.5 Check for correctness of the robust formulation (MODEL 2)

To check the correctness of MODEL 2 (equations 3.4.27-3.4.36 or 3.4.86-3.4.95),

consider the case when the value of the parameters Γ and Π are 0. In such a case,

the values of decision variables θ and ζ can be infinitely high, making equations

3.4.29 (or 3.4.88) and 3.4.30 (or 3.4.89) redundant, and decision variables µ and

σ independent from the influence of any other decision variables. Disposing the

above equations also makes the decision variables θ and ζ redundant. As the

objective (equation 3.4.27 or 3.4.86) is minimization, the variable µ assumes its

lower bound value of 0. As the capacity of the minimum cut in the objective
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function (equation 3.4.27 or 3.4.86) can be reduced by increasing the number of

arcs interdicted, the variables σ in equation 3.4.28 (or 3.4.87) assume their lower

bound values of 0. Substituting the above changes, MODEL 2 can be written as:

MODEL 2D: min
α,β,δ

 ∑
(i,j)∈A′

uijβij

 (3.5.1)

 ∑
(i,j)∈A′

rijδij

 ≤ ∆ (3.5.2)

αi − αj + δij + βij ≥ 0 ∀ (i, j) ∈ A (3.5.3)

αs = 0, αt = 1, δts = 0, βts = 0 (3.5.4)

αi ∈ {0, 1} ∀ i ∈ N (3.5.5)

δij, βij ∈ {0, 1} ∀ (i, j) ∈ A′ (3.5.6)

When the values of the parameters Γ and Π (budgets of uncertainty) are set

to 0, it represents the case of deterministic modeling. MODEL 2D, therefore, rep-

resents a deterministic network interdiction model and is the same as one formu-

lated in Wood (1993), i.e. the robust model reduces to a deterministic formulation

when the budget of uncertainty is set to zero.
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3.6 Extensions

3.6.1 Multiple resources required for interdiction

In this scenario, multiple resources are required for successful interdiction instead

of a single resource. Let P be the set of different resources required for interdic-

tion. The parameters rij, r̂ij, ∆, and Π are updated to rijp, r̂ijp, ∆p, and Πp to

reflect resource consumption and variability, resource availability, and robustness

budgets for different resources. The decision variable πij is updated to πijp to

capture worst-case consumption of resource p. The updated MODEL 1 reflecting

requirement of multiple resources for interdiction is given as:

min
δ

max
γ,π

h(δ, γ)

∑
(i,j)∈A′

(rijp + r̂ijpπijp)δij ≤ ∆p ∀ p ∈ P

∑
(i,j)∈A′

πijp ≤ Πp ∀ p ∈ P

∑
(i,j)∈A′

γij ≤ Γ

δij, γij ∈ {0, 1} ∀ (i, j) ∈ A′

πijp ∈ {0, 1} ∀ (i, j) ∈ A′, p ∈ P

where, h(δ, γ) = max
x

xts∑
(i,j)∈FSi

xij −
∑

(j,i)∈RSi

xji = 0 ∀ i ∈ N
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xij ≤ (uij + ûijγij)(1− δij) ∀ (i, j) ∈ A′

xij ≥ 0 ∀ (i, j) ∈ A′

The above formulation can be modified to obtain a formulation that can be

solved in a commercial solver, as it was done to MODEL 1, using the methodol-

ogy discussed in Subsection 3.4.1 or 3.4.2.

3.6.2 Interdiction at various levels with different economies of scale

Currently, the RNIP has only one level of interdiction, i.e. full interdiction or

100% interdiction. Discrete partial interdiction stages can be introduced to allow

interdiction at various levels. This also provides an avenue to model resource con-

sumption at those interdiction levels such that it can represent economies of scale

or diseconomies of scale or both or none. Figure 3.1 shows an example illustra-

tion of how the cumulative costs of production may scale up with the total output

produced to represent the above scenarios of the economy. The cumulative cost

in the context of RNIP would refer to the resource requirement for interdiction

at a certain level of interdiction and the total output would refer to the level of

interdiction desired.

Let K be the set of interdiction levels possible. The input parameter for nom-

inal resource consumption (rij) and variance of worst-case resource consumption
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Figure 3.1: Scaling of cumulative costs with respect to total output (ES:
Economies of scale, DS: Diseconomies of scale, NS: no economies of scale)

(r̂ij) can now be redefined to also include interdiction levels as rijk and r̂ijk, re-

spectively. A new input parameter yk is defined which shows interdiction level as

a percentage for kth interdiction level, and lies in the range (0, 1]. The variable

representing interdiction (δij) can now be changed to represent interdiction at a

certain level, and can be denoted as δijk. The definition of δijk is given as:

δijk =


1 ; if arc (i, j) is interdicted at kth level

0 ; otherwise

MODEL 1 can now be reformulated to observe discrete partial interdiction at

the desired economy of resource consumption. This would change MODEL 1 to:
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min
δ

max
γ,π

h(δ, γ)

∑
k∈K

∑
(i,j)∈A′

(rijk + r̂ijkπij)δijk ≤ ∆

∑
k∈K

δijk ≤ 1 ∀ (i, j) ∈ A′

∑
(i,j)∈A′

πij ≤ Π

∑
(i,j)∈A′

γij ≤ Γ

δijk ∈ {0, 1} ∀ (i, j) ∈ A′, k ∈ K

γij, πij ∈ {0, 1} ∀ (i, j) ∈ A′

where, h(δ, γ) = max
x

xts∑
(i,j)∈FSi

xij −
∑

(j,i)∈RSi

xji = 0 ∀ i ∈ N

xij ≤ (uij + ûijγij)(1−
∑
k∈K

ykδijk) ∀ (i, j) ∈ A′

xij ≥ 0 ∀ (i, j) ∈ A′

The above model can not be solved directly, but can be reformulated using

the procedure presented in Subsection 3.4.1 to obtain a mixed-integer linear pro-

gram which can be solved.
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3.7 Summary

In this chapter, RNIP is modeled in the context of illicit drugs as a bilevel attacker-

defender framework. The problem was then reformulated as a mixed-integer linear

program in two ways arriving at the same final formulation. The first way was

straight-forward dualization which revealed that RNIP is an integrated robustness

decision and DNIP framework. In the second way, it was also established that

“adding” robustness incrementally to the DNIP would result in the same model

as the integrated model obtained using the first way of derivation. The resulting

RNIP is a mixed-integer linear program which can be solved using commercially

available MIP solvers like Gurobi, CPLEX, etc. A few extensions of the current

RNIP model were also discussed.

Solving RNIP directly using the MIP solver can be computationally expensive

and hence, the next chapter discusses various solution heuristics to solve RNIP in

a time-efficient manner while preserving the solution quality. Solution heuristics

based on Lagrangian Relaxation and Benders’ Decomposition are proposed. Valid

upper bounds of the dual variables of the robustness decision variables γ and π

are also derived.
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4 Solution Methodology

The maximum flow network interdiction problem considering uncertainties

in arc capacity and resource consumption is abbreviated as robust network inter-

diction problem (RNIP), and is described by MODEL 2 formulation (equations

3.4.86-3.4.95). This chapter describes three heuristics to solve RNIP: the first

heuristic is based on Lagrangian Relaxation, the second is based on Benders’

Decomposition initialized using nominal capacity and resource consumption con-

straints, and the third heuristic is based on Benders’ Decomposition initialized

using capacity and resource consumption constraints which are found using La-

grangian Relaxation. Before describing the heuristics, valid upper bounds for the

unbounded variables of RNIP are derived, and the procedure used to solve robust

knapsack problems considering item weight uncertainty is reviewed.

4.1 Valid Upper Bounds

Though the variables µ, σ, θ and ζ are right-unbounded after dualizing the con-

straints involving γ and π variables (refer MODEL 2 in Section 3.4.1 or 3.4.2),

their natural upper bounds exist and are derived later in this section. The upper

bounds are given as:
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µij ≤ ûij ∀ (i, j) ∈ A′ (4.1.1)

θ ≤ max{ûij | (i, j) ∈ A} = θU (4.1.2)

σij ≤ r̂ij ∀ (i, j) ∈ A′ (4.1.3)

ζ ≤ max{r̂ij | (i, j) ∈ AZ} = ζU (4.1.4)

where, AZ is the set of all arcs that can be interdicted while considering

resource consumption robustness, i.e. AZ = {(i, j) | (rij + r̂ij) ≤ ∆ ∀ (i, j) ∈ A′}

(note, AZ ⊆ A).

Constraints 4.1.1-4.1.4 can be added to MODEL 2 to obtain stronger cuts on vari-

ables µ, θ, σ, and ζ. It is shown later that while applying Lagrangian Relaxation,

these constraints also help in avoiding unboundedness in the model.

The intuition behind obtaining the bounds for the µ and θ variables is found

in the objective function of MODEL 2 (equation 3.4.27 or 3.4.86) and the defi-

nition of Γ. The sum of the second and the third term of the objective function

is equal to the increase in capacity of the network because of adding capacity ro-

bustness. The number Γ signifies the maximum number of arcs that can achieve

their worst-case capacities. Similarly, the bounds on the variables for the σ and ζ

variables are found using the interdiction budget constraint in MODEL 2 (equa-

tion 3.4.28 or 3.4.87) and the definition of Π. The sum of the second and the third
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terms on the LHS of the interdiction budget constraint signifies the additional

resource consumption because of the consideration of interdiction resource con-

sumption robustness. The variable Π denotes the maximum number of arcs that

can achieve worst-case resource consumption when they are interdicted.

Actual Upper bounds on µ and σ:

The linearization of variable γ in equation 3.4.25 (or 3.4.66) is given as:

γij ≤ 1 ∀ (i, j) ∈ A′ (4.1.5)

µ is the dual variable corresponding to constraint 4.1.5. The upper bound on

µ can be obtained by studying the effect of constraint 4.1.5 on equation 3.4.19 (or

3.4.60), which results in:

µij ≤ ûij ∀ (i, j) ∈ A′

Similarly, the linearization of the variable π in equation 3.4.25 (or 3.4.83) is

given as:

πij ≤ 1 ∀ (i, j) ∈ A′ (4.1.6)

σ is the dual variable variable corresponding to constraint 4.1.6. The upper

bound on σ is obtained by studying the effect of equation 4.1.6 on equation 3.4.20
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(or 3.4.77), which results in:

πij ≤ r̂ij ∀ (i, j) ∈ A′

An Upper Bound on θ:

All the forward-flowing arcs of a cut (Ns, Nt) in the network can have their

capacities increased. Given any network, we can be sure that the artificial return

arc can never be a forward-flowing arc of a cut. Let us consider the capacity

variances of all the network arcs except the artificial return arc (i.e. the arc set

A), in a non-increasing order:

û1 ≥ û2 ≥ û3 ≥ . . . ≥ ûΓ ≥ . . . ≥ û|A|−1 ≥ û|A|

The maximum increase possible in the capacity of the network is the sum of

the first Γ values of series mentioned, i.e.
Γ∑
k=1

ûk. This can be represented mathe-

matically as:

 ∑
(i,j)∈A′

µij

+ Γθ ≤
Γ∑
k=1

ûk (4.1.7)

57



To calculate an upper bound on θ, we utilize the following inequality:

Γû1 ≥
Γ∑
k=1

ûk (4.1.8)

Using equations 4.1.7 and 4.1.8, and assuming all µ = 0, an upper bound on θ

is found to be:

θ ≤ û1 = max{ûij | (i, j) ∈ A}

An Upper Bound on ζ:

The resource consumption robustness will be considered for an arc only if it

can be interdicted, making it a prerequisite for resource consumption robustness

decision. Let us consider the resource consumption variances of all the network

arcs that can be interdicted (i.e. the arc set AZ) in a non-increasing order, i.e.

r̂1 ≥ r̂2 ≥ r̂3 ≥ . . . ≥ r̂Π ≥ . . . ≥ r̂|AZ |−1 ≥ r̂|AZ |

The maximum increase possible in the capacity of the network is the sum of

the first Π values of series mentioned, i.e.
Π∑
k=1

r̂k. This can be represented mathe-

matically as:

 ∑
(i,j)∈A′

σij

+ Πζ ≤
Γ∑
k=1

r̂k (4.1.9)
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To calculate an upper bound on θ, we utilize the following inequality:

Πr̂1 ≥
Π∑
k=1

r̂k (4.1.10)

Using equations 4.1.9 and 4.1.10, and assuming all σ=0, an upper bound on ζ

is found to be:

ζ ≤ r̂1 = max{r̂ij | (i, j) ∈ AZ}

4.2 Robust Knapsack Problem

Knapsack problem with item weight uncertainty was first solved using Γ-robustness

in Bertsimas and Sim (2003). Bertsimas and Sim (2003) named the problem the

Robust Knapsack Problem (RKP) and solved it directly using CPLEX. The for-

mulation of the RKP with integer values of the budget of uncertainty Γ is given

as:

max
x

∑
i∈N

cixi

∑
i∈N

wixi + max
{S |S⊆N,|S|=Γ}

(∑
j∈S

ŵjxj

)
≤ b

xi ∈ {0, 1} ∀ i ∈ N

where, N denotes the set of all items, ci denotes item values, the item weights
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can vary between [wi−ŵi, wi+ŵi] (wi being the nominal item weight and ŵi being

the item weight variance), and b denotes the knapsack capacity.

Monaci et al. (2013) proposed a dynamic programming approach to solve the

RKP and compared it with three other approaches: MILP formulation by Bert-

simas and Sim (2004), Branch and Cut enumeration, and procedure proposed by

Lee et al. (2012). Their approach performed better than all the other three ap-

proaches when the number of items and the knapsack capacities were high with

lower values of uncertainty budget Γ. The approach proposed by Lee et al. (2012)

performed slightly better than the dynamic programming approach when the

number of items and the knapsack capacity was less or when the higher budget

of uncertainty Γ was used. The MILP formulation and Branch and Cut enumer-

ation performed significantly worse than both of the other approaches. In the

current study, the number of items in the knapsack is low with a small budget of

uncertainty, and therefore the approach proposed by Lee et al. (2012) is chosen for

implementation.

Lee et al. (2012) proved that the RKP can be solved by solving (|N | − Γ + 1)

instances of the ordinary 0-1 knapsack problem, where |N | is the total number of

items and Γ is the budget of robustness. We just focus on the solving methodol-

ogy here, and not the proof.
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The feasible region (S) for the 0-1 RKP is given as:

S =

{
x ∈ {0, 1}n

∣∣∣∣∣ ∑
i∈N

wixi + max
T⊆N,|T |=Γ

∑
j∈T

ŵjxj ≤ b

}

=

{
x ∈ {0, 1}n

∣∣∣∣∣ ∑
i∈N

wixi +
∑
j∈U

ŵjxj ≤ b , ∀ U ⊆ N with |U | = Γ

}

where, N = {1, 2, 3, . . . , n}, w and ŵ are non-negative integers, and items

arranged such that

ŵ1 ≥ ŵ2 ≥ . . . ≥ ŵn. An additional item n + 1 is added with ŵn+1 = 0,

wn+1 = 0, cn+1 = 0, and the set of items is updated as: N+ = N ∪ {n+ 1}. Set

L = {Γ,Γ + 1,Γ + 2, . . . , n, n+ 1}

Sl =

{
x ∈ {0, 1}n

∣∣∣∣∣ ∑
i∈N

wixi +
∑
j∈Nl

(ŵj − ŵl)xj ≤ b− Γŵl , Nl = {j ∈ N+ | j ≤ l}

}

The RKP, given as:

Z∗ = max

{∑
i∈N

cixi

∣∣∣∣∣ x ∈ S
}

can be solved by solving (|N | − Γ + 1) ordinary 0-1 knapsack problems

Z∗l = max

{∑
i∈N

cixi

∣∣∣∣∣ x ∈ Sl
}
, ∀ l ∈ L

Z∗ = max {Z∗l ∀ l ∈ L}
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The ordinary 0-1 knapsack problem can be solved using dynamic program-

ming or by using a MIP solver like Gurobi, CPLEX, etc. Some preliminary anal-

ysis showed that Gurobi was found to be more computationally efficient than

dynamic programming and therefore, Gurobi was chosen to solve the ordinary 0-1

knapsack problem for all runs.

4.3 Lagrangian Relaxation

Bingol (2001) suggested a Lagrangian Relaxation formulation for the MMNIP

(the modified dual of DNIP) to find problematic values of interdiction resource

∆. This served as a motivation to try Lagrangian Relaxation to solve the RNIP.

First, constraint 3.4.87 (or 3.4.28) is relaxed using Lagrangian parameter λ′ ≥ 0,

constraint 3.4.88 (or 3.4.29) is relaxed using Lagrangian parameter λ′′ij ≥ 0, and

constraint 3.4.89 (or 3.4.30) is relaxed using Lagrangian parameter λ′′′ij ≥ 0 in the

final RNIP formulation (MODEL 2). The upper bounds on the variables µ, θ, σ,

and ζ found in section 4.1 are also added. This results in:

min
α,β,δ,µ,θ,σ,ζ

 ∑
(i,j)∈A′

(uij + λ′′ijûij)βij

+

 ∑
(i,j)∈A′

(λ′rij + λ′′′ij r̂ij)δij

− λ′∆
+

 ∑
(i,j)∈A′

(1− λ′′ij)µij

+

Γ−
∑

(i,j)∈A′

λ′′ij

 θ

+

 ∑
(i,j)∈A′

(λ′ − λ′′′ij)σij

+

λ′Π− ∑
(i,j)∈A′

λ′′′ij

 ζ
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αi − αj + δij + βij ≥ 0 ∀ (i, j) ∈ A

αs = 0, αt = 1, δts = 0, βts = 0

αi ∈ {0, 1} ∀ i ∈ N

δij, βij ∈ {0, 1} ∀ (i, j) ∈ A′

µij ∈ [0, ûij] ∀ (i, j) ∈ A′

θ ∈ [0, θU ]

σij ∈ [0, r̂ij] ∀ (i, j) ∈ A′

ζ ∈ [0, ζU ]

Because Lagrangian Relaxation is a relaxation, i.e., it increases the feasible

region for the problem, the new optimum will be lower than the optimum of the

original problem. The above formulation is modified to consider λ′, λ′′ij, and λ′′′ij as

variables and maximizing with respect to them to achieve the maximum possible

value of the relaxed problem, i.e. the best lower bound possible. This problem is

essentially the Lagrangian dual of the relaxed RNIP.

max
λ′,λ′′

min
α,β,δ,µ,θ,σ,ζ

 ∑
(i,j)∈A′

(ūij + λ′′ijûij)βij

+

 ∑
(i,j)∈A′

(λ′rij + λ′′′ij r̂ij)δij

− λ′∆
+

 ∑
(i,j)∈A′

(1− λ′′ij)µij

+

Γ−
∑

(i,j)∈A′

λ′′ij

 θ

+

 ∑
(i,j)∈A′

(λ′ − λ′′′ij)σij

+

Πλ′ −
∑

(i,j)∈A′

λ′′′ij

 ζ
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αi − αj + δij + βij ≥ 0 ∀ (i, j) ∈ A

αs = 0, αt = 1, δts = 0, βts = 0

αi ∈ {0, 1} ∀ i ∈ N

δij, βij ∈ {0, 1} ∀ (i, j) ∈ A′

µij ∈ [0, ûij] ∀ (i, j) ∈ A′

θ ∈ [0, θU ]

σij ∈ [0, r̂ij] ∀ (i, j) ∈ A′

ζ ∈ [0, ζU ]

The above formulation can be decomposed into 5 sub-problems: first con-

taining α, β, and δ terms, and the other four are one-variable sub-problems in the

variables µ, θ, σ, and ζ; if λ′, λ′′, and λ′′′ are considered constants. A gradient-

based optimization method can then be used to solve for the Lagrangian parame-

ters in the Lagrangian Dual as suggested by Fisher (1985). The sub-problems are

given as:

Sub-problem 1:

min
α,β,δ

 ∑
(i,j)∈A′

(uij + λ′′ijûij)βij + (λ′rij + λ′′′ij r̂ij)δij

− λ′∆
αi − αj + δij + βij ≥ 0 ∀ (i, j) ∈ A

αt − αs + δts + βts ≥ 1
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αs = 0, αt = 1, δts = 0, βts = 0

αi ∈ {0, 1} ∀ i ∈ N

δij, βij ∈ {0, 1} ∀ (i, j) ∈ A′

The dual of the sub-problem 1 results in a maximum flow problem with up-

dated capacities, as in Bingol (2001).

SP1 = max
x

xts − λ′∆∑
(i,j)∈FSi

xij −
∑

(j,i)∈RSi

xji = 0 ∀ i ∈ N

xij ≤ min(uij + λ′′ijûij , λ
′rij + λ′′′ij r̂ij) ∀ (i, j) ∈ A′

xij ≥ 0 ∀ (i, j) ∈ A′

Sub-problem 2:

SP2 = min
µ

 ∑
(i,j)∈A′

(1− λ′′ij)µij


µij ∈ [0, ûij] ∀ (i, j) ∈ A′
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The solution to the above problem is trivial.

µij =


ûij ; if λ′′ij ≥ 1

0 ; otherwise

∀ (i, j) ∈ A′

Sub-problem 3:

SP3 = min
θ

Γ−
∑

(i,j)∈A′

λ′′ij

 θ

θ ∈ [0, θU ]

The solution to the above problem is trivial.

θ =


θU ; if

∑
(i,j)∈A′

λ′′ij ≥ Γ

0 ; otherwise

Sub-problem 4:

SP4 = min
σ

 ∑
(i,j)∈A′

(λ′ − λ′′′ij)σij


σij ∈ [0, r̂ij] ∀ (i, j) ∈ A′
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The solution to the above problem is trivial.

σij =


r̂ij ; if λ′′′ij ≥ λ′

0 ; otherwise

∀ (i, j) ∈ A′

Sub-problem 5:

SP5 = min
ζ

Πλ′ −
∑

(i,j)∈A′

λ′′′ij

 ζ

ζ ∈ [0, ζU ]

The solution to the above problem is trivial.

ζ =


ζU ; if

∑
(i,j)∈A′

λ′′′ij ≥ Πλ′

0 ; otherwise

Note that without the upper bounds found in Section 4.1, the sub-problems

2-5 could result in unbounded solutions.

4.3.1 Solution Procedure

1. Initialize the Lagrangian parameters; λ′ ← max(u/r | u < M ; r < M),

λ′′ij ← 0 ∀ (i, j) ∈ A′, and λ′′′ij ← 0 ∀ (i, j) ∈ A′. Set the tolerance value, tol,

(use 10−4 as default value), maximum iterations limit (use 20 iterations as
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default value) for the problem, and maximum computational time limit (use

21600 sec as default value). Set Zold
ub =∞ and Zold

lb = 0.

2. Solve for SP1, which is a maximum flow problem to obtain optimal value of

x, which can be denoted by x̂. Using the dual of the problem, the optimal

cut is obtained, which is denoted by α̂. Solve for SP2, SP3, SP4, and SP5,

which are unconstrained optimization problems with bounds on variables

µ, θ, σ, and ζ, respectively. The optimal values of these variables can be

denoted by µ̂, θ̂, σ̂, and ζ̂.

3. The values of δ̂ are calculated as:

δ̂ij =


1 ; if α̂j − α̂i = 1 & (uij + λ′′ijûij) > (λ′rij + λ′′′ij r̂ij)

0 ; otherwise

∀ (i, j) ∈ A′

4. The values of β̂ are calculated as:

β̂ij =


1 ; if α̂j − α̂i = 1 & δ̂ij = 0

0 ; otherwise

∀ (i, j) ∈ A′

5. Calculate the lower bound Zlb as:

Zlb = SP1 + SP2 + SP3 + SP4 + SP5

If Zlb ≥ Zold
lb , update Zold

lb = Zlb and store the corresponding optimal variable
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values α̂, β̂, δ̂, µ̂, θ̂, σ̂, and ζ̂. Otherwise, update the current Zlb with Zold
lb

and the new variable optimum values with ones corresponding to Zold
lb .

6. The next goal is to utilize the Lagrangian solution to find a feasible solution

(denoted by variables α, β, δ, µ, and θ) which will help determine the upper

bound, Zub. The fact that the robustness and the interdiction decisions are

based on the minimum cut of the network is exploited to obtain the upper

bound solution. The first step is to determine the minimum cut (Ns, Nt)

and minimum cut forward flowing arc set AC , utilizing the dual values of

sub-problem 1. Set:

αi = α̂i =


1 ; if i ∈ Nt

0 ; if i ∈ Ns

AC =
{

(i, j)
∣∣αj − αi = 1 ∀ (i, j) ∈ A′

}

7. All the arcs in the set AC that can be interdicted are considered to be a part

of the interdiction set AI , i.e. AI =
{

(i, j)
∣∣(rij + r̂ij) ≤ ∆ ∀ (i, j) ∈ AC

}
.

(a) Initialize: δij = 0 ∀ (i, j) ∈ A′.

(b) Arrange the resource consumption variances for all arcs in AI in a non-

increasing order, i.e. r̂1 ≥ r̂2 ≥ . . . ≥ r̂|AI | (henceforth, denoted as

r̂k).

(c) If
∑

(i,j)∈AI

rij +
Π∑
k=1

r̂k ≤ ∆:
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Set δij = 1 ∀ (i, j) ∈ AI .

else:

i. Solve the robust knapsack problem (RKP) discussed in Section 4.2,

with the set N = AI , and the parameters c = (u + λ′′û), b = ∆,

w = r, ŵ = r̂, and Γ = Π.

8. Set:

βij =


1 ; if (i, j) is a forward arc of the cut (Ns, Nt) and δij = 0

0 ; otherwise

9. Let, κ = min
{

Γ,
∑

(i,j)∈AC
βij
}

. Set θ as the κth largest ûijβij value.

10. Set µij = max(0, ûijβij − θ) ∀ (i, j) ∈ A′

11. Calculate the upper bound, Zub as:

Zub =

 ∑
(i,j)∈A′

uijβij

+

 ∑
(i,j)∈A′

µij

+ Γθ

If Zub ≤ Zold
ub , update Zold

ub = Zub and store the corresponding optimal

variable values α, β, δ, µ and θ. Otherwise, update the current Zub with

Zold
ub and the new variable optimum values with ones corresponding to Zold

ub .
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12. Calculate the MIPGap as:

MIPGap =
Zub − Zlb

Zlb

13. If MIPGap ≤ tol, then Zub is the optimal objective value and the values of

α, β, δ, µ, and θ constitute the optimal solution. If the maximum number

of iterations is achieved or the time limit is exceeded, then it is concluded

that no optimal solution is found and the current upper bound solution is

reported. Continue to Step 16.

14. Update the Lagrangian parameters λ′, λ′′, and λ′′′ using the updating proce-

dure in Subsection 4.3.2.

15. Repeat steps 2-14 until one of the conditions in Step 13 is satisfied.

16. The feasible values of the variables ζ and σ are given as:

(a) Let, φ = min
{

Π,
∑

(i,j)∈AI
δij
}

. Set ζ value as φth largest r̂ijδij value.

(b) Set σij = max(0, r̂ijδij − ζ) ∀ (i, j) ∈ A′.
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4.3.2 Lagrangian Parameters’ Updating Procedure

The procedure for updating the Lagrangian parameter is the same as in Fisher

(1985):

λ′|n+1 = max

0, λ′|n + fλ
′

n ·

−∆ +

 ∑
(i,j)∈A′

rij δ̂ij

+

 ∑
(i,j)∈A′

σ̂ij

+ Γθ̂

∣∣∣∣∣∣
n


λ′′ij|n+1 = max

{
0, λ′′ij|n + fλ

′′

n ·
(
ûijβ̂ij − µ̂ij − θ̂

)∣∣∣
n

}
∀ (i, j) ∈ A′

λ′′′ij |n+1 = max
{

0, λ′′′ij |n + fλ
′′′

n ·
(
r̂ij δ̂ij − σ̂ij − ζ̂

)∣∣∣
n

}
∀ (i, j) ∈ A′

where, fλ
′

n , fλ
′′

n and fλ
′′′

n are given as:

fλ
′

n =
gλ

′
n (Zub − Zlb)(

−∆ +
(∑

(i,j)∈A′ rij δ̂ij

)
+
(∑

(i,j)∈A′ σ̂ij

)
+ Γθ̂

)2

fλ
′′

n =
gλ

′′
n (Zub − Zlb)∑

(i,j)∈A′

(
ûijβ̂ij − µ̂ij − θ̂

)2

fλ
′′′

n =
gλ

′′′
n (Zub − Zlb)∑

(i,j)∈A′

(
r̂ij δ̂ij − σ̂ij − ζ̂

)2

In the above equations, ‘n’ represents the iteration number. gλ
′
n , gλ

′′
n , and gλ

′′′
n

are initialized at 0.1. They are halved every time the Zlb fails to increase in two

iterations.
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4.4 Benders’ Decomposition-based Heuristic

Benders’ Decomposition is a partitioning algorithm developed by Benders (1962)

to tackle “complicating” variables by temporarily fixing them, which yields a

problem significantly easy to solve. Rahmaniani et al. (2017) conducted a com-

prehensive literature review on the Benders’ Decomposition algorithm detailing

various methods for solution procedure, solution generation, decomposition strat-

egy, and cut generation. For RNIP, the Benders’ Decomposition Master Problem

and the Sub-Problem are formulated by fixing the values of only β variables, as

it results in a sub-problem that generates only optimality cuts and no feasibil-

ity cuts. This is desired as it allows for the evaluation of upper bound and lower

bound of RNIP after each iteration. Benders’ Decomposition Sub-Problem for

RNIP is given as:

Sub-Problem: min
µ,θ

 ∑
(i,j)∈A′

µij

+ Γθ (4.4.1)

µij + θ ≥ ûijβ̄ij ∀ (i, j) ∈ A′ (4.4.2)

µij ≥ 0 ∀ (i, j) ∈ A′ (4.4.3)

θ ≥ 0 (4.4.4)

The dual of the sub-problem is written adopting γij as a dual variable for

constraint 4.4.2. This is done because the variables µ and θ were generated when
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the constraints involving the variable γ were dualized while formulating RNIP

(refer section 3.4.1 or 3.4.2). Therefore, the meaning of the variable γ here is the

same here as the one noted in the nomenclature of variables in section 3.3. The

dual of the Benders’ Sub-Problem is given as:

Sub-Problem-Dual: max
γ

 ∑
(i,j)∈A′

ûijβ̄ijγij


∑

(i,j)∈A′

γij ≤ Γ

γij ≤ 1 ∀ (i, j) ∈ A′

γij ≥ 0 ∀ (i, j) ∈ A′

Because Γ is assumed to be a non-negative integer, the sub-problem dual is

essentially a 0-1 knapsack problem with all weight values of γ variables as 1. This

can be solved by just setting γij = 1 for the Γ highest ûijβ̄ij values, and γij = 0 for

all other arcs of the network. The problem is always feasible and yields optimum.

Therefore, it always results in an optimality cut, which is added to the Master

Problem. This optimality cut is given as:

∑
(i,j)∈A′

(uij + γoijûij)βij − z ≤ 0

where, γoij represents the γij values for the optimality cut o. The Benders’

Master Problem along with the optimality cuts is given as:
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Master Problem: min
z,α,β,δ

z (4.4.5) ∑
(i,j)∈A′

(uij + γoijûij)βij

− z ≤ 0 ∀ o ∈ O (4.4.6)

 ∑
(i,j)∈A′

rijδij

+

 ∑
(i,j)∈A′

σij

+ Πζ ≤ ∆ (4.4.7)

σij + ζ − r̂ijδij ≥ 0 ∀ (i, j) ∈ A′ (4.4.8)

αi − αj + δij + βij ≥ 0 ∀ (i, j) ∈ A (4.4.9)

αs = 0, αt = 1, δts = 0, βts = 0 (4.4.10)

z ∈ (−∞,∞) (4.4.11)

αi ∈ {0, 1} ∀ i ∈ N (4.4.12)

βij, δij ∈ {0, 1} ∀ (i, j) ∈ A′ (4.4.13)

O represents the set of all optimality cuts generated. A heuristic is designed

to solve the Benders’ Decomposition Master Problem which is presented in the

following section.

4.4.1 A Simultaneous Penalty Heuristic for solving the Master Problem

Though the Master Problem has a reduced amount of constraints than the origi-

nal problem, the inherent complexity of the problem is still the same. Therefore,
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the computational time required to solve the Master Problem exactly will be of

the same order as solving the original problem exactly, i.e., it would be of the or-

der of the MIP solver’s computational times. Also, as Benders’ Decomposition

is an iterative procedure with an increasing amount of constraints with each it-

eration, the computational times would just pile up with each passing iteration,

making it an unattractive option. Therefore, a heuristic is designed for quick com-

putation of the Master Problem of Benders’ Decomposition. It should be noted

that the heuristic solution results in an upper bound for the Master Problem. The

equivalent formulation of the Master Problem of Benders’ Decomposition as noted

in equations 4.4.5-4.4.13, is given as:

Master Problem: min
z,α,β,δ

z (4.4.14) ∑
(i,j)∈A′

(uij + ûijγ
o
ij)βij

− z ≤ 0 ∀ o ∈ O (4.4.15)

 ∑
(i,j)∈A′

rijδij

+

 ∑
(i,j)∈S

r̂ijδij

 ≤ ∆ ∀ {S |S ⊆ A′, |S| = Π} (4.4.16)

αi − αj + δij + βij ≥ 0 ∀ (i, j) ∈ A (4.4.17)

αs = 0, αt = 1, δts = 0, βts = 0 (4.4.18)

z ∈ (−∞,∞) (4.4.19)

αi ∈ {0, 1} ∀ i ∈ N (4.4.20)

βij, δij ∈ {0, 1} ∀ (i, j) ∈ A′ (4.4.21)
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where, O is the set of Benders’ Decomposition optimality cuts, and γoij repre-

sents γij values for the cut o. Equation 4.4.16 is the resource robustness constraint

for the RNIP, written as a set of combinatorially many constraints instead of a

single constraint with maximization, which was dualized to obtain the final RNIP

model formulation (refer MODEL 2 in Section 3.4.1 or 3.4.2).

The motivation for the heuristic is to account for |O| constraints (in equa-

tion 4.4.15) using a single constraint. This would reduce the Master Problem to

a Network Interdiction Problem with Resource Consumption Uncertainty only

(NIPRCU). NIPRCU can be solved by first finding the min-cut of the network us-

ing representative capacities, and determining the arc set available for interdiction

(AI). Then, determining δ (the interdiction decision) variables is a robust knap-

sack problem with arc capacities as item values, resource consumption as item

weights, and ∆ is the capacity of the knapsack (for solving the robust knapsack

problem, refer Section 4.2). Once, δ variables are determined, the β variables can

be easily determined, as they are forward arcs of the minimum cut which are not

interdicted.

Calculating representative arc capacities of the network with respect to oth opti-

mality cut:

The method simultaneously penalizes the presence of optimality cuts in the

set O\{o} with respect to the oth optimality cut to calculate the representative

arc capacities for the network. The penalty with respect to the oth optimality cut
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is calculated as:

cap penaltyo =



∑
(i,j)∈A′

γoijûij∑
(i,j)∈A′

γoij
; if

∑
(i,j)∈A′

γoij > 0

0 ; otherwise

(4.4.22)

The representative arc capacities of the network with respect to the oth opti-

mality cut (ũo) are then given as:

ũoij =



uij + ûij ; if γoij = 1

uij ; if γoij = 0 and
∑

q∈O\{o}

γqij = 0

uij + max{0, ûij − cap penaltyo} ; if γoij = 0 and
∑

q∈O\{o}

γqij > 0

(4.4.23)

The above-mentioned penalty procedure guarantees the feasibility of the

solution but not the optimality.

Steps for solving the Benders’ Master Problem using the simultaneous penalty

heuristic:

For each o ∈ O,

1. Calculate the representative arc capacities for the network (ũo) with respect

to optimality cut o.

2. Determine the min-cut (Ns, Nt) of the network. The variable αo and the
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interdiction arc set (AI) for the network are given as:

αoi =


1 ; if i ∈ Nt

0 ; if i ∈ Ns

AI =
{

(i, j) ∈ A′
∣∣ αoj − αoi = 1 and rij ≤ ∆ and γoij = 0

}

3. Initialize δo variables by solving the robust knapsack problem with param-

eters c = ũo, w = r, ŵ = r̂, b = ∆, N = AI , and Γ = Π (refer Section

4.2)

4. The value of ζ is the Πth largest value of r̂ijδ
o
ij.

5. The values of variables σ are given as: σij = max{0, r̂ij − ζ}

6. Determine the βo variables as follows:

βoij =


1 ; if αoj − αoi = 1 and δoij = 1

0 ; otherwise

(4.4.24)

7. The value of zo is
∑

(i,j)∈A′
ũoijβ

o
ij
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The solution of the Master Problem is then given as:

z∗ = max(zo)

α∗ = {αo | zo = z∗}

β∗ = {βo | zo = z∗}

δ∗ = {δo | zo = z∗}

ζ∗ = {ζo | zo = z∗}

σ∗ = {σo | zo = z∗}

4.4.2 Solution procedure

The solution procedure followed here is the same as in Lasdon (2002), only that it

has been modified to the context of RNIP.

1. Set tolerance value (default value, 10−4), iteration limit value (default value,

20), maximum computational time (default value, 21600 sec), and Zub
old =

+∞.

2. Only for the first iteration, use the optimality cut with all γij values as

zero (this a trivial optimality cut, and it prevents unboundedness of Master

Problem in the first iteration). The trivial optimality cut is removed for

subsequent iterations as it would always be satisfied. Initialize O = {}.

80



3. Solve the Master Problem using the heuristic described in Subsection 4.4.1

using the set O (except, in the first iteration), and determine the values: z∗,

α∗, β∗, δ∗, ζ∗, and σ∗.

4. Solve Sub-Problem-Dual problem, using β̄ = β∗, and determine the value of

γ∗ (Optimal solution of dual of the Benders’ sub-problem).

5. Calculate the bounds for the Benders’ Decomposition as:

Lower Bound (Z lb) = z∗ (4.4.25)

Upper Bound (Zub) =
∑

(i,j)∈A′

(uij + γ∗ijûij)β
∗
ij (4.4.26)

6. Check if the current upper bound is better than the previous best upper

bound, and update the current best solution accordingly. That is:

(a) if Zub < Zub
old: do

Zub
old = Zub.

Update the current best solution with α∗, β∗, δ∗, γ∗, ζ∗, and σ∗

(b) else: do

Zub = Zub
old

7. Calculate the MIPGap as:

MIPGap =
Zub − Z lb

Zub
(4.4.27)
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8. If MIPGap is less than the tolerance, then the algorithm has converged.

9. If MIPGap is greater than the tolerance then,

(a) Check if the γ∗ value found in the current iteration is different from the

previously calculated values of γ∗ (i.e., the γ∗ values stored in the set

O).

(b) If the current iteration’s γ∗ value is different from the previously calcu-

lated ones, then, add the following cut to the Master Problem:

 ∑
(i,j)∈A′

(uij + ûijγ
∗
ij)βij

− z ≤ 0

(c) If the value of γ∗ calculated in the current iteration was equal to one

of the previous optimality cuts, then, terminate the algorithm with the

current best solution.

10. If the iteration limit is reached or the computational time is exceeded, termi-

nate the algorithm.

11. Continue Steps 3-10 until one of the termination criteria is satisfied.

The Benders’ Decomposition framework used here does not guarantee solu-

tion optimality as the Master Problem is not solved exactly but using a heuristic.

As the solution of the Master Problem affects the lower bound in the context of

RNIP, it should be noted that the lower bound reported by Benders’ Decompo-
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sition, here, is an upper bound solution of the real lower bound. Therefore, the

MIPGap values reported are an underestimate of the actual MIPGap values.

4.5 Enhanced Benders’ Decomposition-based Heuristic

The idea of the current heuristic is to merge the best qualities of Lagrangian Re-

laxation and Benders’ Decomposition into one unified heuristic. For the heuristic,

Benders’ Decomposition is preceded by Lagrangian Relaxation. The Lagrangian

Relaxation provides with the first optimality cut, and better upper and lower

bounds, after which Benders’ Decomposition is initiated. The procedure for the

heuristic is as follows:

1. Solve the RNIP problem using Lagrangian Relaxation with an iteration limit

(default value, 10), tolerance (default value, 10−4), and maximum compu-

tational time (default value, 21600 sec). The procedure for Lagrangian Re-

laxation is detailed in Section 4.3. If the Lagrangian Relaxation terminates

with the tolerance criteria, the optimal solution is found, and the procedure

is terminated.

2. Using the feasible β variable values (i.e. βLR, the upper bound solution

of Lagrangian Relaxation), determine the first Benders’ Decomposition
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optimality cut, by solving the following to obtain γ∗:

max
γ

∑
(i,j)∈A′

ûijβ
LR
ij γij

∑
(i,j)∈A′

γij ≤ Γ

γij ≤ 1 ∀ (i, j) ∈ A′

γij ≥ 0 ∀ (i, j) ∈ A′

The above problem is a 0-1 nominal knapsack problem with all weights of

all γ variables as 1, for non-negative integer values of Γ. The solution to the

above problem is selecting the top Γ arcs with respect to values ûijβ
LR
ij .

3. Initialize the optimality cut set (O) with the following constraint:

 ∑
(i,j)∈A′

(uij + ûijγ
∗
ij)βij

− z ≤ 0

4. Initialize the Zub
old for Benders’ Decomposition with the Lagrangian Re-

laxation Upper Bound and the current best solution with the Lagrangian

Relaxation upper bound solution. Set Z lb
old for Benders’ Decomposition with

the Lagrangian Relaxation lower bound value. Set tolerance value (default

value, 10−4) and iteration limit (default value, 20) for Benders’ Decomposi-

tion.
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5. Solve Benders’ Decomposition by following steps 3-10 detailed in Section

4.4.2. Add an additional step to retain the best lower bound value in each

Benders’ Decomposition iteration.

6. Once Benders’ Decomposition has terminated, report the best upper bound,

best solution, and best lower bound values.

Like Benders’ Decomposition, the enhanced Benders’ Decomposition also

provides an upper bound solution of Master Problem. This causes the estimated

lower bound to be higher than the actual lower bound, resulting in the reported

MIP gaps which are smaller than the actual gap.

4.6 Summary

This chapter presented three solution heuristics for the RNIP in the context of

illicit drugs. The first heuristic was developed based on Lagrangian Relaxation.

After relaxing three constraints in RNIP (MODEL 2 formulation), the problem

decomposed into a maximum flow problem and four unconstrained optimization

problems. Valid upper bounds were derived for the variables in the unconstrained

optimization sub-problems to prevent unboundedness. The feasible solution for

the problem was developed by exploiting the fact that robustness and interdiction

decisions only depend on the minimum cut of the network, and robust knapsacks

were used to determine the arcs for interdiction.
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The second heuristic was developed based on Benders’ Decomposition. Only

the capacity robustness variables were partitioned out of the RNIP so that the

Benders’ sub-problem would only result in optimality cuts. This is desired as it

allows for the determination of the MIP gap after every iteration. It was shown

that the computational complexity of the Benders’ Master Problem was the same

as that of RNIP, and therefore a heuristic was designed to obtain a strong upper

bound on the Master Problem by using a simultaneous penalty approach. The

simultaneous penalty method aims to condense all the capacity-related optimality

cuts into a single optimality cut so that the RNIP consists only of the resource

consumption robustness, which can be solved exactly. Finally, the third heuristic,

enhanced Benders’ Decomposition, aimed at unifying the Lagrangian Relaxation

framework and the Benders’ Decomposition framework, with the hopes of achiev-

ing better solution confidence. For realizing this, the Lagrangian Relaxation was

first performed. The Lagrangian Relaxation best solution was used to determine

the initial optimality cut for Benders’ Decomposition, and the Lagrangian Relax-

ation bounds were used to initialize the bounds for Benders’ Decomposition.

The next chapter discusses the computational efficiency of the above algo-

rithms with respect to solving RNIP using a MIP solver. Sensitivity analyses are

performed to evaluate the effect of changes in the robustness control parameters,

and changes in magnitude of uncertainty considered. An analysis is performed to

evaluate the value of considering uncertainty in the decision-making process.
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5 Analysis

Robust Network Interdiction is carried out on artificial test networks that

represent drug transportation through roads or rivers. The network design is sim-

ilar to the one presented in Bingol (2001). The network is considered as a n1×n2

grid, where n1 is the number of nodes on the vertical axis and the n2 is the num-

ber of nodes horizontal axis. The source is connected to all the ‘westernmost’

nodes by non-interdictory arcs of infinite capacity. Similarly, all the ‘easternmost’

nodes are connected to the sink by non-interdictory arcs of infinite capacity. An

artificial infinite-capacity non-interdictory arc from the sink node to the source

node is constructed to make modeling simpler. Within the n1×n2 grid, all nodes

on the horizontal axes are connected by ‘west-to-east’ arcs. All the nodes on the

vertical axes are connected by either ‘north-to-south’ or ‘south-to-north’ arcs

which keep alternating in both directions, with the ‘north-western’ most vertical

arc in ‘north-to-south’ direction. The whole n1×n2 grid has diagonal arcs flowing

in ‘north-east’ and ‘south-east’ directions. For all interdictory arcs, the nominal

capacities are integers varying between 10 and 100 units. The capacity variance

of each arc is an integer between 10% and 30% of the arc’s capacity. The param-

eters Γ, Π and ∆ are set at 20 units, 2 units and 2000 units, respectively. For all

interdictory arcs, rij is assumed as 100 units, and for non-interdictory arcs, it is
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set at 106 units. The r̂ij values are randomly chosen to be an integer between 10

and 30 units. For all infinite capacity non-interdictory arcs, both the arc capacity

and resource consumption variances are set to zero. The general network is rep-

resented as n1×n2 further on. Table 5.1 gives a summary of the number of nodes

and directed arcs (including the artificial return arc) in the network, and Figure

5.1 visually represents 4×4. All the computational analyses are carried out on 10

test networks for the sizes of 50×50, 100×100, and 200×200 generated as per the

aforementioned procedure. Only a single test network of size 500×500 is tested for

all the following analyses.

Table 5.1: Test Networks

Network Number of nodes Number of directed arcs

50×50 2502 9803

100×100 10002 39603

200×200 40002 159203

500×500 250002 998003

All the computational experiments are carried out on one of the two Win-

dows desktops with Intel core i7 processors, 4 cores, 8 logical processors, and 32

GB of RAM. The MIP solver used in the current study is Gurobi Optimizer 8.1

[Gurobi Optimization (2019)] (referred to as ‘Gurobi’ for the rest of the docu-

ment).
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Figure 5.1: Visual representation of 4×4

5.1 Computational Efficiency

The computational efficiency of the RNIP can affect the decisions in real-life, as

most of the times the tactical intelligence received is time-sensitive [Steinrauf

(1991), Kenney (2003), Meyer and Anderson (2008)]. In this section, the three

heuristics developed in the study are compared to the solutions obtained using a

state-of-the-art MIP solver. Later sections cover sensitivity analysis for changes in

the robustness control parameters (i.e., the budgets of uncertainty) and changes in

the amount of uncertainty in the data. The test networks are solved using:

• Gurobi optimizer in Python interface. The model is run for a maximum of

21600 sec for 50×50, 100×100, and 200×200, and 43200 sec for 500×500.

The default tolerance of 10−4 is used. All other parameters are also used at

their default values.
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• Lagrangian Relaxation (LR) implemented in Python. The computational

time limit is set to 21600 sec for all the 31 test networks, and a tolerance

value of 10−4 is used. An iteration limit of 20 is used for all test networks.

• Benders’ Decomposition (BD) implemented in Python. The computational

time limit is set to 21600 sec, the tolerance value is set to 10−4, and the

iteration limit is set to 20 for all the 31 test networks.

• The Enhanced Benders’ Decomposition (EBD) implemented in Python.

The computational time limit is set to 21600 sec, and the tolerance value

is set to 10−4. The LR is run for a maximum of 10 iterations, followed by a

maximum of 20 iterations for BD.

All the instances of solving a maximum flow problem (or minimum cut problem)

in LR or BD are solved using the push-relabel maximum flow algorithm available

in the networkx library in Python [Hagberg et al. (2008)]. The push-relabel maxi-

mum flow algorithm was developed by Goldberg and Tarjan (1988), and is one of

the most efficient algorithms for solving maximum flow problems with a strongly

polynomial time complexity of O(|N |2 · |A|). The nominal 0-1 maximum profit

knapsack problems while solving the Robust Knapsack Problem (refer Section

4.2) are solved by modeling them as an optimization problem in Gurobi as it was

found to be computationally efficient than dynamic programming. Default values

of 20, 2, and 2000 are used for Γ, Π, and ∆, respectively.
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Table 5.2 summarizes the computational performance of Gurobi and the

three developed heuristics for solving RNIP. It can be noted that Gurobi is unable

to find an initial solution for the test network 500×500 even after 12 hours of

computation. For all 50×50 test networks, Gurobi found an optimal solution.

Gurobi found an optimal solution for only one of the 10 test networks of sizes

100×100 and 200×200. For the rest of the cases, Gurobi terminated using the

maximum computational time criteria. All cases of LR terminated using the

maximum iterations criteria, while all cases of BD and EBD terminated because

no new optimality cuts could be found.

Figure 5.2: Savings in overall computational time compared to Gurobi

Figure 5.2 shows the computational time savings achieved by using LR, BD,

and EBD for solving RNIP with respect to the time required by Gurobi. The

overall time savings is defined as the ratio of total time saved while solving all

the 10 test networks of the same size by a heuristic in comparison to Gurobi to
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the total time required to solve the same using Gurobi. The overall time sav-

ings while using LR are 86.75% (minimum: -204.75%, maximum: 95.74%) for

50×50 networks, 98.63% (minimum: -10.28%, maximum: 99.09%) for 100×100

networks, and 93.3% (minimum: 86.8%, maximum: 95.63%) for 200×200 net-

works when compared to Gurobi. The overall time savings in the case of using BD

to solve RNIP compared to Gurobi are: 92.66% (minimum: -48.15%, maximum:

97.82%), 99.33% (minimum: 71.94%, maximum: 99.66%), and 97.23% (mini-

mum: 96.32%, maximum: 98.21%) for test networks of sizes 50×50, 100×100, and

200×200, respectively. For EBD, the overall time savings are: 90.52% (minimum:

-195.24%, maximum: 97.26%), 99.33% (minimum: 17.79%, maximum: 99.21%),

and 94.78% (minimum: 91.19%, maximum: 96.34%) for test networks of sizes

50×50, 100×100, and 200×200, respectively. It is interesting to note that the time

taken by Gurobi to compute the first solution for any 200×200 network is more

than twice the total time required by any of the three heuristics developed in this

study.
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Figure 5.3: Maximum final gap values while solving RNIP

Figure 5.3 shows the maximum final gap values achieved by Gurobi, LR,

BD, and EBD, and Figure 5.4 shows the maximum deviation of upper bound

achieved by LR, BD, and EBD from the Gurobi upper bound. The final gaps

while solving RNIP using Gurobi were a maximum of 0.01%, 0.32%, and 0.4% for

the 50×50, 100×100, and 200×200 networks, respectively. The similar values of

LR were 13.17%, 5.29%, and 2.32% respectively. In spite of large final gap values

for LR, their final upper bounds found were no further than 1.44%, 0.32%, and

0.12% from the maximum flow found using Gurobi for the 50×50, 100×100, and

200×200 networks, respectively. So, even though the confidence in the solution is

lower, the quality of the solution is very strong. The maximum final gap values for

BD are 5.13%, 3.23%, and 1.58% for network sizes 50×50, 100×100, and 200×200,

respectively. The maximum deviation in upper bounds found using BD from the

Gurobi upper bounds are 2.04%, 0.36%, and 0.12% for the test networks 50×50,
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100×100, and 200×200, respectively. On average, the solution quality found using

the BD is worse than LR, however, the confidence on the solution found is much

better. EBD results in the maximum final gap values of 4.58%, 3.01%, and 1.48%

respectively for the network sizes 50×50, 100×100, and 200×200, making them

better than the BD counterpart values. The maximum deviation in the upper

bounds found using EBD from the Gurobi upper bounds are the same as reported

for LR. EBD is a true amalgam of LR and BD, giving the strong solution quality

of LR while improving on the already superior confidence on solution obtained

using BD, imbibing the best qualities from both the previous approaches.

Figure 5.4: Maximum deviation from Gurobi upper bound solution
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Table 5.2: Performance of Gurobi and heuristics for RNIP

50×50 100×100 200×200
500×500

Min Ave Max Min Ave Max Min Ave Max

Final UB w.r.t.

Final Gurobi

UB (%)

LR 100 100.57 101.44 100.07 100.19 100.32 100.02 100.06 100.12 NA

BD 100 100.96 102.04 100.07 100.23 100.36 100.03 100.08 100.12 NA

EBD 100 100.57 101.44 100.07 100.18 100.3 100.02 100.06 100.12 NA

Final Gap (%)

Gurobi 0 0 0.01 0 0.2 0.32 0 0.26 0.4 NA

LR 5.9 10.05 13.17 2.48 3.91 5.29 1.48 1.85 2.32 0.93

BD 0.49 2.55 5.13 0.94 2.28 3.23 0.56 1.11 1.58 0.51

EBD -0.16 1.96 4.58 0.61 2.15 3.01 0.46 1.06 1.48 0.51

Final Run Time

(sec)

Gurobi 21 476 1454 253 19465 21600 7886 20229 21600 NA

LR 61 63 65 196 267 305 945 1356 1552 6418

BD 10 35 118 71 130 322 194 560 795 2898

EBD 34 45 64 170 234 428 656 1055 1904 5683

Time to 1st

solution (sec)

Gurobi 8 9 10 159 181 196 4035 4245 4473 NA

LR 3 3 3 14 14 15 64 70 79 663

BD 2 3 3 10 11 12 46 49 55 416

EBD 3 3 3 14 14 15 64 70 79 663

Note:

(a) LR: Lagrangian Relaxation; BD: Benders’ Decomposition; EBD: Enhanced BD, UB: Upper Bound.

(b) NA: Not Applicable. Gurobi could not provide any solution for the test network 500×500.

(c) Percentage and time values have been rounded to nearest hundredths and ones, respectively.
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The quality of the first upper bound found by the heuristics is examined to

check the solution stability, as well as their applicability in very time-sensitive

scenarios. It was found the first upper bound reported by all the three heuristics

is the same. As the procedure for EBD starts with LR, their first upper bounds

should be the same. BD starts by solving a network interdiction model with re-

source consumption uncertainty only, and then adds capacity uncertainty to deter-

mine the first solution. LR determines the minimum cut using nominal capacity

values (because of the chosen initial values of the Lagrangian parameters) and

solves for the interdiction decision considering resource consumption uncertainty,

following which it incorporates capacity uncertainty decision to determine the

first solution, essentially making it the same as the first problem encountered in

BD. Therefore, all three heuristics have the same first upper bound. Figure 5.5

depicts the variation in the quality of the first upper bound with network size.

The maximum deviation of the heuristics’ first upper bound from the Gurobi final

upper bound found is 2.06%, 0.56%, and 0.12% for test networks of sizes 50×50,

100×100, and 200×200, respectively. Also, all heuristics require less than 100 sec

to arrive at the first solution with network size as large as 200×200.

Though time savings using EBD are less than BD, it does provide better

solution quality as well as solution confidence than BD. Smith and Song (2019)

cite the computational inefficiency of current algorithms as one of the major bot-

tlenecks faced to determine strategies in network interdiction models. All the
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Figure 5.5: Quality of the first upper bound determined by heuristics

developed heuristics are time-efficient and result in improved solution quality and

confidence as the network size increases. Among the three heuristics, EBD pro-

vides a near-perfect compromise between solution quality, solution confidence, and

computational time, and therefore, EBD is chosen to conduct further analyses

on the sensitivity of the model to robustness parameters, and amount of uncer-

tainty in parameter estimation. Finally, an analysis for determining the value of

considering uncertainty in decision-making is conducted.

5.2 Sensitivity to Changes in Amount of Uncertainty in Parameters

When the illicit drug transportation network is modeled, the decision-maker (lo-

cal enforcement agency) does not have complete knowledge of the transportation

network. Using the current intelligence, local surveillance patterns, and drug avail-
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ability at the destination market, the local agency tries to determine the nominal

capacity of the link in the network, the nominal resource consumption required

for interdiction, and their variances from the nominal values. The confidence in

the estimated variances for the capacity of the arc and the resource consumption

depends on the quality of information available at the time of decision-making,

motivating the sensitivity analysis for the amount of uncertainty in the network

parameters. A Monte Carlo scheme is adopted to simulate actual realizations

of the illicit drug transportation network, and the performance of the interdic-

tion decisions are studied. The procedure adopted to set up the Monte Carlo

simulations is given in algorithm 1. The network is modeled at three levels of

uncertainty: Low, where û and r̂ vary between 10% and 30% of u and r, respec-

tively (the base case); Moderate, where the variances are between the 20% and

60% of the nominal values; and, High, where the variances are between the 30%

and 90% of the nominal values. The sensitivity analysis is conducted by solving

RNIP using EBD (as it provided the best compromise, see section 5.1), using

the base case values of Γ, Π, and ∆ as 20, 2, and 2000, respectively. A summary

of the sensitivity analysis is presented in Table 5.3. The calculated maximum

flow refers to the robust maximum flow found using EBD. Interdiction success is

the ratio of total success and total attempts calculated after the termination of

Monte Carlo scheme (Algorithm 1). The minimum increase, average increase, and

maximum increase in the actual maximum flow refer to the variation across the
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different Monte Carlo simulations for a single network. The increases are calcu-

lated with respect to the calculated maximum flow. The ‘Min’, ‘Ave’ and ‘Max’

associated with a network size refer to the variation across the 10 different test

networks of the same size. The step random.seed(0) ensures that a test network is

tested using the same actual realizations in the Monte Carlo simulation indepen-

dent of the algorithm used to determine the interdiction decision. The command

networkx.maximum flow value(G, s, t) computes the maximum flow in a di-

rected graph G from source node s to the sink node t.

From table 5.3, it can be noticed that the calculated maximum flow increases

with an increase in the amount of uncertainty in the estimation of arc capacity

and resource consumption, showing that robust model is sensitive to the amount

of variation. An interdiction attempt is successful only if the allocated resources

are greater or equal to the resource requirement. Because of the way the interdic-

tion success criterion is designed, and the way the actual values are calculated,

the interdiction success rate is independent of the amount of uncertainty. The

negative values of the increases in the actual maximum flows with respect to the

calculated robust maximum flows represent that the calculated maximum flow

overestimates the actual value and vice versa. The average increase in the actual

maximum flow values indicates that the robust model always underestimates the

actual maximum flow when the uncertainty is low, always overestimates the actual

maximum flow when uncertainty is high and may underestimate or overestimate
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the actual maximum flow by a small amount when the uncertainty is moderate.

The overestimation is preferred to underestimation as it is better if the actual

illicit drug flow to the destination market is lower than what is expected. The ro-

bust model performs better with the same budgets of robustness when the amount

of uncertainty is high rather than low, which seems counter-intuitive. This is

because the budget of capacity uncertainty (Γ) can provide more protection at

a higher amount of certainty than at a lower amount of uncertainty. As a low

amount of uncertainty presents a greater challenge, further analyses are performed

using low uncertainty in network parameters. The next section discusses the effect

of different budgets of uncertainty on actual maximum flows.
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Algorithm 1 Monte Carlo simulation scheme

Solve the network interdiction model with parameters u, û, r and r̂ and deter-
mine the optimum values of decision variables: δ∗ and π∗

The interdiction decision set, AIA = {(i, j) | δ∗ij = 1 ∀ (i, j) ∈ A′}
Resource allocation, r̆ = {(rij + π∗ij r̂ij ∀ (i, j) ∈ AIA ; 0 ∀ (i, j) ∈ A′\AIA}
total attempts = 0; total success = 0
g = 1000 for 50×50, 100×100; g = 200 for 200×200; g = 100 for 500×500
current iter = 0; MCSim iter = g
actual max flows = zeros(MCSim iter)
random.seed(0)
while current iter < MCSim iter do

Generate actual arc capacity, ũij = Uniform(uij − ûij, uij + ûij)
Generate actual resource requirement, r̃ij = Uniform(rij − r̂ij, rij + r̂ij)
for (i, j) ∈ AIA do
total attempts + = 1
if r̆ij ≥ r̃ij then
total success + = 1
ũij = 0

end if
end for
Let G be the directed graph with capacities ũ
Let s be the source node, and t be the sink node
actual max flows[current iter] = networkx.maximum flow value(G, s, t)
current iter + = 1

end while
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Table 5.3: Sensitivity to changes in the amount of uncertainty of parameters

Amount of

uncertainty

50×50 100×100 200×200
500×500

Min Ave Max Min Ave Max Min Ave Max

Calculated

maximum flow

(units)

Low 4096 4378 4566 9758 10157 10404 21253 21802 22019 57231

Moderate 4483 4781 4927 10449 10630 10769 21915 22211 22536 57693

High 4870 4995 5143 10723 10990 11237 22041 22695 22996 58243

Interdiction

success rate (%)

Low 55.69 56.59 57.09 55.76 56.56 57.23 54.71 56.59 58.53 56.89

Moderate 55.56 56.19 57.22 55.86 56.23 56.64 54.82 55.62 56.24 53.95

High 55.31 55.88 56.47 55.4 55.87 56.54 54.22 55.78 58.06 56.22

Minimum

increase in

AMF (%)

Low -3.98 -2.53 -1.46 -3.58 -2.51 -1.62 -2.96 -1.78 -0.91 -1.32

Moderate -14.07 -11.27 -9.46 -9.95 -8.47 -7.22 -7.64 -6.14 -5.17 -4.72

High -21.14 -18.86 -14.62 -18.33 -15.54 -13.72 -13.64 -12.85 -11.67 -11.45

Average

increase in

AMF (%)

Low 8.16 9.32 10.73 3.15 3.46 3.91 0.65 1.02 1.47 -0.32

Moderate -0.05 1.12 2.44 -2.85 -1.85 -1.03 -3.46 -3.06 -2.58 -3.59

High -7.77 -6.7 -5.52 -9.86 -8.96 -8.16 -10.25 -9.41 -8.9 -9.98

Maximum

increase in

AMF (%)

Low 19.63 21.76 24.5 8.4 9.33 10.29 2.95 3.61 4.39 0.58

Moderate 10.42 13.75 18.74 2.92 3.88 4.78 -0.68 -0.08 0.69 -2.79

High 2.92 4.5 5.74 -5.25 -3.92 -2.33 -7.72 -6.87 -6.03 -9.03

Note:

(a) AMF: Maximum flow found in a Monte Carlo Simulation.

(b) Increases are with respect to the calculated maximum flow for the test network.

(c) All percentage values are rounded to the nearest hundredths
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5.3 Sensitivity to Changes in Budgets of Uncertainty

The budgets of uncertainty help control the amount of uncertainty incorporated

into modeling and therefore, the conservativeness of the solution obtained. There-

fore, a sensitivity analysis on the budgets of uncertainty is conducted to find

robustness parameters which provide explain the actual results the best. For the

same, the RNIP is solved using EBD (as it provided the best compromise, refer

section 5.1) for the case of ‘Low’ amount of uncertainty in the estimation of arc

capacity and resource consumption for interdiction (as it proved to be the most

challenging, refer section 5.2). The case of ‘Low’ uncertainty provided an under-

estimate of the actual maximum flows on average, indicating that budgets of un-

certainty should be increased to provide a better estimate of the actual maximum

flows in the network. Firstly, the sensitivity analysis on the budget of capacity

uncertainty (Γ) is conducted by varying it for the values of 20 (the base case), 30,

and 40, while maintaining the values of Π and ∆ at their base case values of 2

and 2000. Secondly, the sensitivity analysis is performed on the budget of resource

consumption uncertainty (Π) by varying it to the values of 2 (the base case), 6,

and 10, while adopting the base case values of 20 and 2000 for the parameters Γ

and ∆. The Monte Carlo scheme adopted in section 5.2 is used to measure the

changes in actual maximum flow while changing the robustness control parameters

Γ and Π.
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Table 5.4: Sensitivity to changes in the budget of capacity uncertainty

Γ
50×50 100×100 200×200

500×500
Min Ave Max Min Ave Max Min Ave Max

Calculated

maximum flow

(units)

20 4096 4378 4566 9758 10157 10404 21253 21802 22019 57231

30 4153 4466 4659 9887 10284 10548 21417 21974 22189 57458

40 4230 4542 4740 10010 10402 10629 21577 22135 22353 57673

Interdiction

success rate

(%)

20 55.69 56.59 57.09 55.76 56.56 57.23 54.71 56.59 58.53 56.89

30 56.01 56.52 57.16 55.75 56.49 57.07 54.95 56.63 58.53 56.89

40 56.01 56.64 57.16 55.52 56.49 57.07 54.82 56.48 58.53 56.89

Minimum

AMF (units)

20 3984 4268 4426 9424 9902 10152 20824 21415 21708 56476

30 3964 4273 4426 9551 9907 10152 20832 21406 21744 56476

40 3980 4275 4426 9538 9908 10197 20792 21417 21744 56476

Average

AMF (units)

20 4504 4786 4938 10140 10508 10731 21565 22025 22265 57048

30 4507 4785 4938 10141 10510 10737 21554 22031 22268 57048

40 4508 4787 4938 10139 10510 10741 21581 22028 22268 57048

Maximum

AMF(units)

20 4993 5330 5511 10762 11104 11345 22186 22590 22896 57562

30 5162 5364 5511 10762 11120 11395 22087 22565 22878 57562

40 5034 5340 5511 10807 11109 11340 22127 22571 22878 57562

Note:

(a) AMF: Actual Maximum flow found in Monte Carlo Simulation.

(b) Interdiction success rates and flow values are rounded to the nearest hundredths and ones, respectively.
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Table 5.4 summarizes the effect of changing Γ on the actual maximum flows.

The calculated maximum flow refers to the robust maximum flow found using

EBD. Interdiction success rate is the ratio of total success and total attempts

calculated after the termination of Monte Carlo scheme (Algorithm 1). The mini-

mum, average, and maximum actual maximum flows refer to the variation across

the different Monte Carlo simulations for a single network. The ‘Min’, ‘Ave’ and

‘Max’ associated with a network size refer to the variation across the 10 different

test networks of the same size. The effect of an increase in Γ increases the calcu-

lated maximum flow by about 2% for 50×50 test networks per 10 unit increase in

Γ. The increase in calculated maximum flow for 100×100, 200×200, and 500×500

per 10 unit increase in Γ is about 1.3%, 0.8%, and 0.4%, respectively. This is ex-

pected as the conservativeness of the solution increases with an increase in the

budget of uncertainty. However, changes in Γ do not affect interdiction success,

and the actual flow at all. This occurs because the change in Γ affects the calcu-

lated maximum flow after the interdiction decisions are made, and helps decide

how much of the variation in arc capacity is accepted. The best outcomes were

achieved using the Γ value of 40 which caps the deviation of the average actual

maximum flow from the calculated maximum flow at 6.83% underestimation of

actual flow.

Table 5.5 summarizes the effect of changing Π on the actual maximum flows.

The calculated maximum flow increases with an increase in Π values on average
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for all network sizes. This is expected because, with an increase in the budget of

uncertainty, the conservativeness of the estimate should increase. As Π accounts

for uncertainty in resource consumption, it also affects the interdiction decisions.

Therefore, with an increased accounting of variation in resource consumption, the

chances of a successful interdiction should increase, as can be seen in the table

5.5. For the actual maximum flow calculations, there are two opposing effects with

increasing values of Π: the actual maximum flow should increase as the number

of interdiction attempts decrease as we account for more uncertainty in resource

consumption, and the actual maximum flow should decrease as the chances of

a successful interdiction increases with increasing values of Π. It can be noticed

that the effect of the second factor (increased interdiction success rate) dominates

the effect of the first factor (reduced interdiction attempts), resulting in a strong

decline in actual maximum flows with an increase in the values of Π. The Π value

of 10 achieves the best outcomes, with the average and the absolute deviation of

the average actual maximum flow from the calculated maximum flow being less

than 1% and 2%, respectively, overall the test networks.

The comparison of the best performing Γ,Π combinations of 40,2 and 20,10

show the latter combination provided better results as the deviation of the actual

maximum flow from the calculated maximum flow is lesser and the interdiction

success rates are higher than the prior Γ,Π combination.
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Table 5.5: Sensitivity to changes in the budget of resource consumption uncertainty

Π
50×50 100×100 200×200

500×500
Min Ave Max Min Ave Max Min Ave Max

Calculated

maximum flow

(units)

2 4096 4378 4566 9758 10157 10404 21253 21802 22019 57231

6 4114 4441 4636 9841 10233 10471 21348 21891 22111 57265

10 4152 4480 4678 9914 10289 10489 21380 21929 22151 57329

Interdiction

success rate (%)

2 55.69 56.59 57.09 55.76 56.56 57.23 54.71 56.59 58.53 56.89

6 67.31 67.73 68.21 66.92 67.65 68.01 65.97 67.61 69.44 66.63

10 78.53 78.87 79.98 78.04 78.7 80.46 77.67 78.6 79.47 78.22

Minimum

AMF (units)

2 3984 4268 4426 9424 9902 10152 20824 21415 21708 56476

6 3912 4208 4346 9509 9851 10089 20676 21361 21710 56389

10 3872 4151 4320 9410 9805 9986 20698 21262 21526 56310

Average

AMF (units)

2 4504 4786 4938 10140 10508 10731 21565 22025 22265 57048

6 4356 4659 4817 10003 10377 10607 21439 21895 22126 56924

10 4198 4508 4692 9852 10222 10442 21253 21738 21967 56768

Maximum

AMF(units)

2 4993 5330 5511 10762 11104 11345 22186 22590 22896 57562

6 4841 5122 5266 10601 10911 11115 22061 22421 22766 57533

10 4553 4871 5034 10253 10655 10886 21695 22186 22480 57333

Note:

(a) AMF: Actual Maximum flow found in Monte Carlo Simulation.

(b) Interdiction success rates and flow values are rounded to the nearest hundredths and ones, respectively.
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5.4 Value of Adding Robustness

This section determines the value of considering uncertainty in the decision-

making process of network interdiction, by comparing it with scenarios not con-

sidering the uncertainty (i.e. the deterministic network interdiction problem, or

DNIP). The differences in the interdiction decisions when uncertainty is consid-

ered versus when uncertainty is not considered are apparent even for trivial small

networks (refer example presented in section 1.1). For an additional example, con-

sider a 4×4 test network generated as per the procedure mentioned at the very

beginning of this chapter and adopting the values of Γ, Π, ∆ as 2, 1, and 220.

The interdiction decisions when the network is solved using RNIP versus DNIP

are shown in figure 5.6. It can be noticed that incorporating capacity robustness

can change the minimum cut of the network, and along with resource consump-

tion robustness it can affect the interdiction decisions.

For detailed analysis, the test networks for the case of ‘Low’ uncertainty

(variances are 10%-30% of the nominal values of arc capacity, and resource con-

sumption) as it proved to be the most challenging (refer to section 5.2). Firstly,

the test networks are solved as a DNIP using Gurobi. The Gurobi termination

criteria are tolerance of 10−4 or maximum computational time of 21600 sec (the

only exception is the 500×500 test network, for which the time limit is 43200 sec).

The value of parameter ∆ is set to 2000. The solutions of DNIP are compared to
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(a) RNIP

(b) DNIP

Figure 5.6: Minimum cut and the interdiction decisions of a 2×2 test network

109



Figure 5.7: Sensitivity to changes in Γ (Π = 2, ∆ = 2000)

those obtained by solving the network as an RNIP using EBD.

Figure 5.7 shows the performance of RNIP with varying Γ values (with Π =

2) and DNIP on 100×100 test networks. It can be noticed that the robust models

provide a better estimate of the actual flows and the probability of interdiction

success improves by about 5%. The best performing Γ,Π combination here is

40, 2. Figure 5.8 shows the performance of RNIP with varying Π values (with

Γ = 20) and DNIP on 100×100 test networks. The robust model provides a better

estimate of the actual maximum flow than the deterministic model here as well.

Also, the probability of interdiction success increases with an increasing value of

Π, reaching almost 80% interdiction success at Π = 10. The Γ,Π combination of

20,10 outperforms the previous best combination of 40,2.

RNIP is solved using EBD using two Γ,Π combinations are used: first, the

base case combination of 20,2; second, the best performing combination of 20,10.

110



Figure 5.8: Sensitivity to changes in Π (Γ = 20, ∆ = 2000)

When RNIP is solved using the budgets of uncertainty as 0, it reduces to a DNIP

(for a detailed explanation, refer section 3.5). Therefore, DNIP can be represented

as an RNIP with a Γ,Π combination of 0,0. However, the formulation proposed

by Wood (1993) is used to solve DNIP, as it does not have any redundant con-

straints which occur in RNIP when the Γ,Π combination of 0,0 is used simply.

The value of parameter ∆ is set as 2000 for both RNIP and DNIP. After solving

the test networks as a DNIP or RNIP, a Monte Carlo scheme is adopted to evalu-

ate actual maximum flows and the interdiction success rates. The procedure used

for Monte Carlo simulation is the same as one adopted in Section 5.2.

Table 5.6 presents a summary of the comparison between outcomes obtained

by solving the network interdiction problem in a deterministic manner versus a

robust manner. It can be observed the conservativeness of the calculated solution

increases sharply when uncertainty in arc capacity and resource consumption is
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accounted for. The interdiction success rate increases by about 5% on average

for the base case Γ,Π combination of 20,2, and about 27% on average for the

best performing Γ,Π combination of 20,10, when compared to the deterministic

counterpart. The average actual flows for the robust solution with the Γ value of

20 and the Π value of 2 are only just slightly better than the deterministic solu-

tion. Even though the actual maximum flows are the same, the deviation from

the calculated maximum flows is lower for the Γ,Π combination of 20,2 than the

combination 0,0. However, with the Γ value of 20 and the Π value of 10, the ac-

tual maximum flows reduce significantly, as much as 6.8% on average for test

networks of size 50×50 compared to the case of deterministic solution. Also, the

actual maximum flows deviate by at most 1% only from the calculated maximum

flow on average for the Γ,Π combination of 20,10 making the estimates very re-

liable. The experiment shows that incorporating robustness in decision-making

can improve the final outcomes even though it provides more conservative solu-

tions. However, these improvements may seem practically negligible considering

the added efforts required to measure and incorporate uncertainty into model-

ing. One of the reasons why improvements are meager is that the interdiction

attempt made on the network is relatively smaller. The value of parameter ∆ at

2000, represents interdiction attempt on only about 14%, 7%, and 3.5% of the

forward flowing arcs in the minimum cut of 50×50, 100×100, and 200×200 test

networks, respectively. For the next experiment, larger interdiction attempts are
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made with greater budgets of uncertainty with a hypothesis that the robust model

would perform significantly better than than the deterministic model and lead to

pragmatically considerable reductions in maximum flow.

For the evaluation of the value of adding robustness while undertaking a

larger interdiction attempt, two values of parameter ∆ are considered: 10000

and 15000. The robust model is solved using EBD with the Γ,Π combinations

of 60,60 and 100,100 when ∆ values are 10000 and 15000, respectively. Table 5.7

summarizes the results obtained using 10000 as the value of parameter ∆. The ∆

value of 10000 represents an interdiction attempt on about 68%, 34%, and 17%

of the forward arcs of the minimum cut of 50×50, 100×100, and 200×200 test

networks in the deterministic scenario, respectively. It can be noticed that the

difference in the probability of interdiction success is about 34% across all network

sizes. The robust model provides highly conservative values of maximum flow (i.e.,

CMF). The maximum flows calculated by the robust model are about 109%, 30%,

and 13% greater than the maximum flows calculated by the deterministic model

on average for the 50×50, 100×100, and 200×200 test networks, respectively. In

contrast, the actual maximum flows achieved by the robust model on the 50×50,

100×100, and 200×200 test networks are lower than the deterministic model by

47.9%, 21.5%, and 9.7% on average, respectively. Figure 5.9 graphically represents

the ratio calculated maximum flow (CMF) to the actual maximum flow (AMF),

and the percentage reduction in actual maximum flow observed while using the
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robust model instead of the deterministic model. It can be seen that the ratio of

CMF to AMF significantly higher for the robust model and is also closer to 100%

than for the deterministic model, indicating that the robust model is more reliable

than the deterministic model.
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Table 5.6: Value of adding robustness in decision-making (∆ = 2000)

Γ Π
50×50 100×100 200×200

500×500
Min Ave Max Min Ave Max Min Ave Max

Calculated

maximum flow

(units)

0 0 3742 4040 4227 9350 9720 9921 20761 21298 21520 NA

20 2 4096 4378 4566 9758 10157 10404 21253 21802 22019 57231

20 10 4152 4480 4678 9914 10289 10489 21380 21929 22151 57329

Interdiction

success rate

(%)

0 0 50.45 51.15 51.62 50.93 51.44 51.87 49.4 51.33 54.17 NA

20 2 55.69 56.59 57.09 55.76 56.56 57.23 54.71 56.59 58.53 56.89

20 10 78.53 78.87 79.98 78.04 78.7 80.46 77.67 78.6 79.47 78.22

Minimum

AMF (units)

0 0 4033 4265 4484 9549 9890 10114 20890 21405 21652 NA

20 2 3984 4268 4426 9424 9902 10152 20824 21415 21708 56476

20 10 3872 4151 4320 9410 9805 9986 20698 21262 21526 56310

Average

AMF (units)

0 0 4540 4837 5044 10191 10554 10776 21617 22073 22303 NA

20 2 4504 4786 4938 10140 10508 10731 21565 22025 22265 57048

20 10 4198 4508 4692 9852 10222 10442 21253 21738 21967 56768

Maximum

AMF(units)

0 0 5150 5421 5635 10762 11189 11434 22150 22673 22974 NA

20 2 4993 5330 5511 10762 11104 11345 22186 22590 22896 57562

20 10 4553 4871 5034 10253 10655 10886 21695 22186 22480 57333

Note:

(a) AMF: Actual Maximum flow found in Monte Carlo Simulation.

(b) Interdiction success rates and flow values are rounded to the nearest hundredths and ones, respectively.
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Table 5.7: Value of adding robustness in decision-making (∆ = 10000)

Γ Π
50×50 100×100 200×200

Min Ave Max Min Ave Max Min Ave Max

Calculated Maximum

flow (units)

0 0 607 651 675 4598 4715 4844 14793 15147 15416

60 60 1301 1361 1450 5859 6126 6338 16571 17088 17387

Interdiction success

(%)

0 0 51.05 51.33 51.78 50.79 51.22 51.48 50.96 51.61 52.16

60 60 84.97 85.37 85.72 85.01 85.31 85.59 84.78 85.17 85.83

Minimum increase in

AMF (%)

0 0 2324 2514 2659 6526 6994 7381 17264 17871 18160

60 60 1256 1363 1515 5628 5925 6167 16161 16624 16870

Average increase in

AMF (%)

0 0 3268 3468 3672 7937 8219 8396 18675 19088 19352

60 60 1668 1807 1924 6158 6450 6653 16791 17245 17522

Maximum increase in

AMF (%)

0 0 4108 4423 4810 8886 9364 9496 19712 20170 20553

60 60 2070 2254 2431 6728 7065 7307 17455 17852 18253

Note:

(a) AMF: Actual Maximum flow found in Monte Carlo Simulation.

(b) Increases are with respect to the calculated maximum flow

(c) All percentage values are rounded to the nearest hundredths
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Figure 5.9: Value of adding robustness (∆ = 10000)

Table 5.8 summarizes the results obtained using the value of parameter ∆ as

15000. The ∆ value of 15000 represents an interdiction attempt on about 100%,

68%, and 34% of the forward arcs of the minimum cut of 50×50, 100×100, and

200×200 test networks in the deterministic scenario, respectively. A difference

in the probability of interdiction success of about 38% across all network sizes

between the robust model and the deterministic model is achieved. The robust

model provides highly conservative values of maximum flow (i.e., CMF). The max-

imum flows calculated by the robust model are about 109%, 30%, and 13% greater

than the maximum flows calculated by the deterministic model on average for

the 50×50, 100×100, and 200×200 test networks, respectively. In contrast, the

actual maximum flows achieved by the robust model on the 50×50, 100×100, and

200×200 test networks are lower than the deterministic model by 78.13%, 38.74%,

and 16.65% on average, respectively. It is interesting to note that the AMFs ob-
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tained by the deterministic model here is greater than the AMFs obtained using

the ∆ parameter as 10000. The reason for this is that the abundance of inter-

diction resources actually led to a minimum cut with a larger number of forward

arcs, leading to higher actual maximum flows. Figure 5.10 graphically represents

the ratio calculated maximum flow (CMF) to the actual maximum flow (AMF),

and the percentage reduction in actual maximum flow observed while using the

robust model instead of the deterministic model. It can be seen that the ratio of

CMF to AMF here is lower for the deterministic scenario here than for the case

when ∆ is 10000 (see Figure 5.9). However, for the robust model the ratio be-

comes less reliable only for the 50×50 test network, and remains relatively stable

for the 100×100 and 200×200 test networks.

Figure 5.10: Value of adding robustness (∆ = 15000)
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Table 5.8: Value of adding robustness in decision-making (∆ = 15000)

Γ Π
50×50 100×100 200×200

Min Ave Max Min Ave Max Min Ave Max

Calculated Maximum

flow (units)

0 0 0 0 0 2635 2719 2791 11868 12072 12235

60 100 300 359 412 4209 4336 4484 14415 14815 15052

Interdiction success

(%)

0 0 51.16 51.33 51.52 51.05 51.28 51.48 50.88 51.51 52.1

60 100 89.39 89.67 89.88 89.24 89.48 89.83 89.08 89.49 89.85

Minimum increase in

AMF (%)

0 0 2402 2683 2960 5738 6126 6521 15953 16332 16750

60 100 400 488 543 3959 4074 4238 13892 14140 14419

Average increase in

AMF (%)

0 0 3559 3813 4144 7191 7477 7687 17302 17655 17938

60 100 766 834 877 4437 4580 4730 14336 14715 14960

Maximum increase in

AMF (%)

0 0 4659 4917 5434 8319 8738 9251 18475 18863 19129

60 100 1061 1193 1281 4903 5129 5371 14848 15280 15626

Note:

(a) AMF: Actual Maximum flow found in Monte Carlo Simulation.

(b) Increases are with respect to the calculated maximum flow

(c) All percentage values are rounded to the nearest hundredths

119



5.5 Summary

In this chapter, computational analyses are performed on various test networks.

Firstly, the computational efficiency of heuristics is established and compared to

solving it using a state-of-the-art MIP solver. The MIP solver provides the best

solution quality as well as confidence in the solution, but the computational time

requirement is unreasonably large. The Lagrangian Relaxation heuristic (LR) pro-

vides very good solution quality very quickly, but the confidence in the solution

is lacking. A heuristic-based on Benders’ Decomposition (BD) is developed which

provides better solution confidence bounds than LR but lacks the solution quality

of LR. Finally, an Enhanced Benders’ Decomposition based heuristic (EBD) is

developed which merges the above LR and BD heuristics. EBD achieves solution

quality of LR with solution confidence bounds better than BD, in a very short

computation time.

The above analysis is followed by a sensitivity study on how the amount of

uncertainty in the arc capacity and resource consumption affects the solution

quality. A Monte Carlo simulation scheme is developed to simulate actual net-

works and test the robustness of the decision at three levels of uncertainty in

network parameter estimation: Low, Moderate, and High. It was found that the

computed maximum flows slightly overestimated the actual maximum flows for

the Moderate and High uncertainty cases, but significantly underestimated the
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actual maximum flows for the Low uncertainty cases. As the test networks with

Low level of uncertainty in network parameters provided the most challenge, fur-

ther analyses were performed only for them. To improve the underestimation of

actual maximum flow, the budgets of uncertainty are increased. The sensitivity

to the changes in the budgets of uncertainty was performed by changing only one

of the Γ or Π parameters from the base case, to check their effect. The changes in

the parameter Γ only affect the calculated maximum flow for the network, without

changing the interdiction success rates and actual maximum flows. Whereas, an

increase in the parameter Π increases the interdiction success rate and reduces the

actual maximum flows. The Γ,Π combination of 20,10 was found to provide the

best results for how the randomness and the success of an interdiction attempt

were described in the Monte Carlo scheme.

The final analysis of the value of considering robustness showed that the in-

terdiction decisions vary in even the trivial small networks. The analysis of the

interdiction success rates and the actual maximum flows in case of a determinis-

tic decision and a robust decision were compared. It was found that though the

estimates of the robust decision are more conservative than the deterministic de-

cision, the reliability of the solution as well as the final outcomes are superior for

the robust decisions (i.e. the robust decision provides a better estimate of actual

maximum flow, and the actual maximum flow is significantly lower for the robust

case than for the deterministic case). When the interdiction attempts are larger,
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the robust solutions outperform the deterministic solutions with a practically sig-

nificant improvement in reduction of maximum flows as well as the reliability of

maximum flow estimates provided by the model. The next chapter concludes this

thesis and suggests some directions for future research.
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6 Conclusions

6.1 Summary and Conclusions

Network-based structures are ubiquitous, and therefore, the identification and

study of the vulnerable connections of the network are imperative. The overarch-

ing goal of this thesis was the identification of the vulnerable connections of the

network under uncertainty. Specifically, the identification of the vulnerable arcs of

a maximum flow network was undertaken using a network interdiction framework

considering uncertainty in arc capacity and interdiction resource consumption.

In this study, network interdiction consists of two players, the adversary and the

interdictor, each of whom gets a single turn after which the game ends. The goal

of the adversary is to maximize the flow through the network and moves second

in the game. The goal of the interdictor is to interdict arcs to minimize the maxi-

mum flow that can be achieved by the adversary and moves first in the game. The

uncertainty is incorporated into the model using robust optimization with poly-

hedral uncertainty sets, introduced by Bertsimas and Sim (2004). The problem

is initially formulated as a bilevel program, each level representing the decision-

making undertaken by each player. As the bilevel formulation can not be solved

directly, it is reformulated as a mixed-integer linear program. This mixed-integer

linear formulation represents the maximum flow network interdiction model con-
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sidering uncertainties in arc capacity and resource consumption, abbreviated as

Robust Network Interdiction Problem (RNIP). When the budgets of uncertainty

are set to 0, RNIP reduces to the deterministic maximum flow network interdic-

tion model proposed by Wood (1993). Extensions of RNIP, one requiring multiple

resources for interdiction, and the other allowing discrete partial interdiction are

proposed. However, solving these extensions is not a part of this thesis.

RNIP is an NP-Hard problem to solve, and therefore, solving it exactly for

moderate- and large-sized networks can be very time-consuming. In some real-life

scenarios, the information regarding the adversary may be time-sensitive requiring

quick decision-making [Kenney (2003), Meyer and Anderson (2008)]. This mo-

tivates the development of three efficient heuristics. The first heuristic is based

on Lagrangian Relaxation (LR). Valid upper bounds of the unbounded variables

in RNIP are derived to prevent unboundedness in LR sub-problems. Maximum

flow - minimum cut strong duality and robust knapsack problem [Bertsimas and

Sim (2003)], along with the Lagrangian parameters, are used to derive the upper

bound solution of RNIP. The second heuristic is based on Benders’ Decomposi-

tion (BD). RNIP is partitioned in such a manner that the BD sub-problem only

results in optimality cuts, ensuring that lower bound and upper bound solutions

can be obtained after every iteration. The BD master problem is time-expensive

to be solved exactly using an MIP solver as its inherent complexity is the same

as that of RNIP. A simultaneous penalty heuristic is designed to efficiently solve

124



the BD master problem. It was found that LR led to a very strong upper solution,

but a weak lower bound solution and BD led to moderate lower and upper bound

solutions to RNIP. The third heuristic aims to merge the best attributes of LR

and BD into one and is called Enhanced Benders’ Decomposition (EBD). EBD

is achieved by first solving the problem using LR, and then using the final upper

bound solution of LR to derive the first optimality cut for BD. The final bounds

for LR also act as valid initial bounds for BD in the EBD heuristic. EBD achieves

the upper bound of LR and stronger lower bounds than BD for RNIP, making it a

true amalgam of LR and BD.

All the three developed heuristics are very time efficient, achieving bet-

ter than 85% time savings compared to a state-of-the-art MIP solver across all

the 31 test networks considered in the study. Among the three heuristics, EBD

provides the best trade-off between computational time-efficiency and solution

confidence (lesser than 5% MIP gap across all test networks). A recent survey

of network interdiction models and algorithms by Smith and Song (2019) cites

computational efficiency as a major bottleneck faced by adaptive defense strate-

gies, especially in large networks. The EBD heuristic proposed here can get the

first solution in about 11 minutes with a gap of 1.1% for a network consisting of

250,000 nodes and 998,000 directed arcs, in contrast to the state-of-the-art MIP

solver which fails to compute an initial solution in 12 hours. Sensitivity analysis

is performed to identify the best performing combination of budgets of robust-
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ness using a Monte-Carlo simulation scheme. A robust decision provides a much

better estimate as well as a reduction in the maximum flows for the scenarios

generated by the Monte Carlo scheme, compared to a decision not considering

uncertainty. In the present study, RNIP provides estimates which are less than 6%

from maximum flows found in Monte Carlo simulations compared to at least 26%

underestimation when no uncertainties are considered, on average for 100×100

test networks and larger. The robust decisions also lead to a reduction in aver-

age actual maximum flows in the simulations, about 78% reduction for 50×50

test networks, 39% reduction for 100×100 test networks, and 17% reduction for

200×200 test networks, when 15000 units of resources are spent on interdiction

attempt compared to cases of no uncertainty consideration. This shows that con-

sidering uncertainty in decision-making results in more reliable predictions as well

as leads to practically significant improvement in the objective, here, minimization

of maximum flow in a network.

6.2 Directions for future research

Several assumptions are made in this work (refer section 3.2 for the compilation

of all the assumptions). While most of the assumptions are readily generalizable,

the others can be tackled to make this work more widely applicable. First is that

the adversary has no information about the interdiction attempt made by the in-

terdictor. This assumption is necessary to model a static network that is used by
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both the players. However, like the interdictor has information about the adver-

sary, the adversary too might gain information about the interdiction attempt.

This could lead to changes in the network structure after the interdictor’s turn

like the appearance of new nodes and arcs, and abandonment of some old nodes

and arcs. Dynamic network modeling in the context of network interdiction under

uncertainty could be a possible future direction.

The second assumption is that the uncertainty considered in modeling as well

as during analysis is symmetrical about the nominal value considered. However,

this may not always be true. Application of distributionally robust optimization

to network interdiction problems could be explored.

The third assumption is that the adversary knows the source and the desti-

nation for the adversary’s commodity. New frameworks for considering incomplete

information in uncertain network interdiction models can be considered.

Currently, the problem models decision-making by the interdictor on the ad-

versary’s network. The study can be extended to model decision-making by the

defender on its network, which is attacked by the adversary. Even though the

heuristics proposed here are very computationally efficient and provide great con-

fidence in the solution, they do not provide the exact solution. The development

of exact time-efficient solution algorithms could be looked into.
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