PAPER: 20-05617

CAN AUTONOMOUS DELIVERY ROBOTS REDUCE LAST MILE ENERGY CONSUMPTION AND CO₂ EMISSIONS?

Dylan Jennings & Dr. Miguel Figliozzi

Maseeh College of Engineering and Computer Science

T 🛛 Lab

PORTLAND STATE UNIVERSITY

Problem Context:

- E-commerce purchases increase by 16% each year in the United States
- Low efficiency of last-mile of deliveries

Figure Source: https://www.augment.com/blog/evolution-ecommerce-last-decade/

Solution: Autonomous Delivery Robots (ADRs)

- Deliver items to customers
- Travels on road / sidewalk
- NO delivery person
- SADRs vs RADRs

Starship SADRs with Mothership Van

Nuro RADR

Figure Sources: https://media.daimler.com/marsMediaSite/ko/en/15274799; www.nuro.ai

Contents of Our Paper

AutoX RADR

- Capabilities of existing ADRs
- Energy consumption of ADRs
- Determined change in VMT for different customer densities
- Determined ideal vehicle fleets for different customer densities
- CO₂ emissions for different ADRs

Figure Source: <u>https://www.businessfleet.com/323140/</u> were-learning-very-quickly-using-autonomous-vehicles-for-grocery-delivery

Capabilities of Starship Technologies' SADR

Speed, mph (kph)	Capacity, lbs (kg)	Capacity, chambers	Range, mi (km)
4 (6.4)	40 (18.1)	1	2 (3.2)

Small Sidewalk ADR 1 chamber, can hold about 6 parcels

Figure Source: <u>https://i7.pngguru.com/preview/613/627/675/</u> starship-technologies-robot-technology-delivery-drone-robot.jpg

Capabilities of Starship's Prototype Mothership

Diesel Mercedes-Bens Sprinter Cargo Van Carries up to 8 SADRs Human driven

Capabilities of analyzed RADRs

RADR	Capacity, Ib (kg)	Capacity,	Max Speed, mph	Range, mi
Company		chambers	(kph)	(km)
Nuro	243 (110)	2	35 (56)	10 (16.1)
Udelv	1300 (590)	32	60 (97)	60 (97)

Udelv RADR

Energy Consumption of ADRs

Vehicle	Energy Consumption wh/km	% of baseline
Conventional Van	1000	488%
Electric Van*	205	100%
Udelv Van	194	95%
Nuro Van	140	68%
SADR	24.7	12%

*E-Van is our baseline vehicle

Customer Densities

- Four different density scenarios
- Customers per mile² (customers per km²)
- Low density:
- Medium density:
- High density:
- Very high density:

1.1(0.43)4.4(1.70)17.6(6.81)

70.6 (27.26)

Results

Mothership (SADRs) Reduction in VMT

- Lower VMT than baseline E-Van for all scenarios
- Delivery work is spread between many small "drone workers" (SADRs)
- Up to 18% reduced VMT for small distances from depot to service area
- Drawback: increased sidewalk travel from robots

Nuro & Udelv (RADR) Increase in VMT

- Udelv equivalent with E-Van except when range of Udelv is exceeded
- Nuro range is 10 miles, so makes many tours
- Nuro VMT is then 2 to 3 times E-Van VMT

SADR Energy Consumption

SADR's energy consumption is much lower than diesel vans that transport them. Units: Kwh

Long-haul	Long-haul Low Density		Very High Density	
travel d (kms)	SADR	Van (mothership)	SADR	Van (mothership)
0	1.3	36.9	0.2	4.6
5	1.3	46.9	0.2	14.6
10	1.3	56.9	0.2	24.6
15	1.3	66.9	0.2	34.6

RADR Energy Consumption

- RADRs have lower energy consumption because they are electric vehicles
- Nuro is better in very high density scenarios

Long-haul	Low Density		Very High Density	
travel d (kms)	Nuro	UDelv	Nuro	UDelv
0	10.9	8.8	0.8	1.1
5	29.0	10.7	2.2	3.0
10	NA	12.6	NA	5.0
15	NA	14.6	NA	6.9

Ideal Vehicle Fleets

- Based on energy consumption
- SADR best at d=0 if no mothership involved

	Low Density	High Density
Depot Close to Service Area	SADR/Udelv	SADR/Nuro
Depot Far from Service Area	E-Van	Udelv

Best energy consumption (ideal fleet)

- Low energy consumption: high density & low d
- High energy consumption: low density & high d
- *Not including SADRs

d (kms)	Density			
	Low	Med.	High	Very High
0*	8.8	4.4	1.6	0.8
5	10.7	6.3	4.1	2.2
10	12.6	8.3	6.1	5
15	14.6	10.2	8	7
20	16.5	12.1	9.9	8.9
25	18.5	14.1	11.9	10.8
30	21.6	16	13.8	12.8
35	23.6	18	15.8	14.7
40	25.7	21	17.7	16.6

Where is each vehicle the ideal fleet vehicle?

Rural Service Area

This Photo by Unknown Author is licensed under CC BY-SA

Depot Near Service Area

SADR

Udelv RADR

Rural Service Area

This Photo by Unknown Author is licensed under CC BY-SA

Depot Far from Service Area

Electric Van

Urban Service Area

Depot Near Service Area

SADR

Nuro RADR

This Photo by Unknown Author is licensed under CC BY-NC-ND

Urban Service Area

Depot Far from Service Area

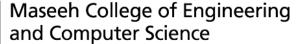
Udelv RADR

This Photo by Unknown Author is licensed under CC BY-NC-ND

CO₂ Emissions Comparison

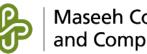
- Diesel vehicles create 22.5 times CO₂ as electric vehicles
- Internal combustion engines are less CO₂ efficient than electric engines in any situation
- Introduction of ADRs would substantially reduce CO₂ emissions

CO₂ Emissions Comparison


- E-vans produce 4% the emissions of a conventional combustion engine van
- RADRs produce 3% the emissions
- SADRs without a mothership produce 0.7% the emissions

Acknowledgment

Research funded by FMRI (Freight Modeling Research Institute) University Transportation Center



PORTLAND STATE UNIVERSITY

Maseeh College of Engineering and Computer Science

PORTLAND STATE UNIVERSITY

QUESTIONS?

Additional Sources

Slide 7 Figure Sources:

www.nuro.ai

https://www.transportmedia.be/wp-

content/uploads/2019/01/Udelv-1024x576.jpg