Do Bicycles Reduce Passenger Car Travel Speeds on Urban Roads without Bicycle Lanes? Evidence from Roadways in Portland

Paper 20-05261

Jaclyn S. Schaefer Miguel A. Figliozzi, PhD Avinash Unnikrishnan, PhD

Maseeh College of Engineering and Computer Science Lab

Background

Additional bikeways will be needed to accommodate larger volumes of bicycles as cities seek to expand their bicycle mode share. Shared-use roads can be a safe and economical solution to this growing demand. Bikeway design guidance recommends shared roads may be appropriate for low traffic volumes and speeds.

Results of a simulated traffic study have raised concerns that increased bicycle volumes will impede motor vehicles and cause additional traffic congestion or travel time delay unless bike lanes are installed on roadways, however.

This research presents a comparative analysis using empirical data from six locations without bicycle lanes in Portland.

FIGURE 1—Preferred Bikeway Type for Urban, Urban Core, Suburban and Rural Town Contexts, Bikeway Selection Guide (FHWA, 2019)

Data Selection

Observations of class two vehicles (passenger cars) belonging to one of two vehicle configurations were selected for analysis based on the assumption that slower bicycle (class one vehicle) speeds may provoke reduced passenger car speeds before or during overtaking maneuvers when approaching a bicycle from behind.

Vehicle Configuration Scenarios

Scenario (i)

Scenario (ii)

TABLE 1—Data collection site characteristics. All sites had a 25 mph posted speed limit. Double yellow lines were placed within 40 ft. of a traffic control device at sites marked *.

				ADT	
Location	Road Markings	Grade %	Width (ft.)	EB	WB
Harrison W of 23 rd	Sharrow	4.1	35.5	663	1084
Harrison W of 26 th	Sharrow*	4.0	35.5	553	923
Harrison E of 27 th	Sharrow*	4.3	35.5	1249	1462
Harrison W of 30 th	Sharrow*	1.6	35.5	1594	1450
Lincoln E of 48 th	Sharrow	1.4	34	642	719
Hawthorne E of 44 th	Center left-	0	51 with 12 ft.	NA	6568
	hand turn lane		center lane		

Analysis

- Two-sample t-tests with the null hypothesis defined as scenarios (i) and (ii) having equal means.
- 95% confidence intervals for the 50th and 85th percentile speeds.
- Peak hour observations analyzed separately in addition to a 24-hour period.

FIGURE 2—Street view of Harrison, eastbound toward 30th.

FIGURE 3—Empirical distributions with mean speeds for the 24hour period at westbound Harrison east of 27th (left) and eastbound Harrison west of 23rd (right).

FIGURE 4—Peak hour 50th percentile confidence intervals for Hawthorne east of 44th, westbound (left) and Harrison west of 26th, eastbound (right).

TABLE 2—t-test between mean speeds for the 24-hour period.

		N		Mean (mph)			
		Scenario	Scenario	Scenario	Scenario		
Location		(i)	(ii)	(i)	(ii)	t-Statistic	p-Value
Harrison W	EB	146	149	21.77	21.95	-0.34	0.731
of 23rd	WB	462	379	24.54	24.88	-1.16	0.246
Harrison W	EB	220	471	21.22	21.39	-0.46	0.648
of 26th	WB	350	767	21.95	21.86	0.32	0.753
Harrison E	EB	148	591	22.95	23.32	-0.95	0.341
of 27th	WB	181	629	22.66	23.93	-4.07	6.0 E-05*
Harrison W	EB	496	1108	22.45	23.06	-3.02	2.6 E-03*
of 30th	WB	479	980	22.58	22.99	-1.99	0.047*
Lincoln E of	EB	323	2720	22.24	22.05	0.68	0.495
48th	WB	286	2895	21.93	22.5	-2.21	0.027*
Hawthorne	WB	28	9041	24.21	27.48	-2.59	0.015*
E of 44th							

Key Findings

- Statistically significant differences in speed were found to be negligible from a practical perspective, on the order of one mile per hour or less in most instances (TABLE 2).
- A difference of approximately 3 mph was seen at one location serving traffic volumes well in excess of the recommended 2500 ADT for shared roads.
- Peak hour t-test results and the 95% confidence intervals did not support the statistically significant results of the 24-hour period t-tests.
- Scatterplots and correlation coefficients close to zero indicated the absence of a relationship between gap time and speed for both traffic scenarios at all sites
- Double yellow lines may inhibit overtaking behavior.
- High occupancy of street parking removes effective width for passing and may contribute to minor differences in speeds.
- The magnitude of speed differences was smaller at locations where sharrows were present.

Conclusion

The results of this research indicate that bicycles do NOT reduce passenger car speeds by a practically significant amount provided the recommended bikeway design parameters are followed.

Transportation Research Board 99th Annual Meeting

Bicycle Research, Session 1144