The video begins at 0:39.

View slides

Summary: This presentation is a showcase of various GIS tools developed for bicycle network analysis and planning. The showcase includes a tool for assessing community-wide bikeability, a tool for forecasting bicycle volumes based on street topology, and a tool for evaluating different bicycle improvement plans in terms of exposure to danger situations for bicyclists. The tools will be demonstrated with case study data. The presentation will include a review of the Highway Capacity Manual Bicycle Level of Service and a discussion about using bicycle and pedestrian data collected through citizen-volunteer count programs.

Bio: Dr. Michael Lowry holds a joint appointment in Civil Engineering and Bioregional Planning at the University of Idaho. He is an affiliate researcher for the National Institute for Advanced Transportation Technology. His research focuses on capital investment decision-making and transportation planning for bicyclists and pedestrians. Dr. Lowry teaches courses related to sustainable transportation, engineering statistics, and economic analysis. He received his PhD in Civil and Environmental Engineering from the University of Washington and BS and MS from Brigham Young University.

View slides

Abstract: Existing regional travel forecasting systems are not typically set up to forecast usage of bicycle infrastructure and are insensitive to bicyclists' route preferences in general. We collected revealed preference, GPS data on 162 bicyclists over the course of several days and coded the resulting trips to a highly detailed bicycle network model. We then use these data to estimate bicyclist route choice models. As part of this research, we developed a sophisticated choice set generation algorithm based on multiple permutations of labeled path attributes, which seems to out-perform comparable implementations of other route choice set generation algorithms. The model was formulated as a Path-Size Logit model to account for overlapping route alternatives. The estimation results show compelling intuitive elasticities for route choice attributes, including the effects of distance and delay; avoiding high-volumes of vehicular traffic, stops and turns, and elevation gain; and preferences for certain bike infrastructure types, particularly at bridge crossings and off-street paths. Estimation results also support segmentation by commute versus non-commute trip types, but are less clear when it comes to gender. The final model will be implemented as part of the regional travel forecasting system for Portland, Oregon, U.S.A.

Strong and Fearless | Enthused and Confident | Interested but Concerned | No Way No How

PRESENTATION ARCHIVE

Originally developed by Roger Geller for the city of Portland, the “Four Types of Cyclists” typology (Strong and Fearless; Enthused and Confident; Interested but Concerned; No Way No How) has been adopted widely to help guide efforts to increase bicycling for transportation. This webinar will present findings from a new, national survey conducted in collaboration with the National Association of Realtors.  In Portland, 60 % of the population falls into the "interested but concerned" category, and they represent a promising segment of the population in terms of increasing the bicycle mode share. In this webinar, we will address the following questions:

  • Does the Four Types of Cyclists typology apply nationally? 
  • What are the characteristics of each type of cyclist? 
  • How does the existing environment, including bicycle infrastructure, affect the share of people in each category/type? 
  • What programs or infrastructure might increase bicycling for transportation among the...
Read more
Economic and Business Outcomes of Bicycle and Pedestrian Improvements
 

PRESENTATION ARCHIVE

OVERVIEW

The National Street Improvements Study, conducted by PSU in conjunction with PeopleForBikes and consulting firm Bennett Midland, researched the economic effects of bicycle infrastructure on 14 corridors across six cities — Portland, Seattle, San Francisco, Memphis, Minneapolis and Indianapolis. The study found that improvements such as bicycle and pedestrian infrastructure had either positive or non-significant impacts on the local economy as measured through sales and employment. In this webinar, lead researcher Jenny Liu will share the results of the investigation and the unique methodology for investigating these economic outcomes.

THE RESEARCH

This webinar is based on a study funded by the National Institute for Transportation and Communities (NITC) and the Summit Foundation, and conducted at Portland State University. Read more about the research: ...

Read more

Watch video

View slides: Bell Presentation (PDF)

Moore Presentation (PDF)

Ma Presentation (PDF)

Summaries: 
Identification and Characterization of PM2.5 and VOC Hot Spots on Arterial Corridor by Integrating Probe Vehicle, Traffic, and Land Use Data: The purpose of this study is to explore the use of integrated probe vehicle, traffic and land use data to identify and characterize fine particulate matter (PM2.5) and volatile organic compound (VOC) hot spot locations on urban arterial corridors. An emission hot spot is defined as a fixed location along a corridor in which the mean pollutant concentrations are consistently above the 85th percentile of pollutant concentrations when considering all other locations along the corridor during the same time period. In order to collect data for this study, an electric vehicle was equipped with instruments designed to measure PM2.5 and VOC concentrations. Second-by-second measurements were performed for each pollutant from both the right and left sides of the vehicle. Detailed meteorological, traffic and land use data is also available for this research. The results of a statistical analysis are used to better understand which...

Read more

Watch video

View slides

Summary: In this seminar, Tara Weidner will discuss changes in the works to the State Analysis Procedures Manual (APM) to include three graduated levels of bike planning methods for use in Oregon communities, based on community size, data needs, and planning stage.  These include the Bike Level of Traffic Stress (BLTS), a sketch tool used to assess bike network connectivity, the data-heavy Highway Capacity Manual Multi-modal Level of Service (MMLOS) procedures, and a simplified MMLOS developed by the same researchers. 

Bio: Tara Weidner is an Integrated Transportation Analysis Engineer in ODOT’s Transportation Planning Analysis Unit (TPAU).  She has over 20 years of experience in modeling and analysis of multi-modal transportation systems. Her work focuses on arming Oregon’s communities with tools to plan for the future, including being the lead on ODOT’s GreenSTEP Greenhouse Gas model and coordinating other multi-modal transportation and land use tools and analysis. She joined TPAU about a year ago after working as a Senior Planner for Parsons Brinkerhoff (PB), where she was the consultant lead for the ODOT StateWide Integrated Model (SWIM) and worked with the FHWA on Mega-Regions modeling tools and managed a webinar series on "Climate Change Planning for MPOs.

Pages