Post date: Wed, 12/03/2014 - 2:00pm
Event Date:
Jan 23, 2009
Content Type: Events

The proliferation of information technology in the transportation field has opened up opportunities for communication and analysis of the performance of transportation facilities. The Highway Capacity Manual relies on rules of thumb and small data samples to generate levels of service to assess performance, but modern detection technology gives us the opportunity to better capture the dynamism of these systems and examine their performance from many perspectives. Travelers, operations staff, and researchers can benefit from measurements that provide information such as travel time, effectiveness of signal coordination, and traffic density. In particular, inductive loop detectors show promise as a tool to collect the data necessary to generate such information. But while their use for this purpose on restricted‐access facilities is well understood, a great many challenges remain in using loop detectors to measure the performance of surface streets.

This thesis proposes 6 methods for estimating arterial travel time. Estimates are compared to simulated data visually, with input/output diagrams; and statistically, with travel times. Methods for estimating travel time are applied to aggregated data and to varying detector densities and evaluated as above. Conclusions are drawn about which method provides the best estimates, what levels of data aggregation can still provide useful information, and what the effects of detector density are on the quality of estimates....

Read more
Post date: Tue, 11/25/2014 - 3:45pm
Event Date:
May 01, 2009
Content Type: Events

View slides

The video begins at 2:53.

Abstract: The concept of accessibility has long been theorized as a principal determinant of household residential choice behavior. Research on this influence is extensive but the empirical results have been mixed, with some research suggesting that accessibility is becoming a relatively insignificant influence on housing choices. Further, the measurement of accessibility must contend with complications arising from the increasing prevalence of trip-chains, non-work activities, and multi-worker households, as well as reconcile person-specific travel needs with household residential decisions. This paper contributes to the literature by addressing the gap framed by these issues and presents a novel residential choice model with three main elements of innovation. First, it operationalized a time-space prism (TSP) accessibility measure, which the authors believe to be the first application of its kind in a residential choice model. Second, it represented the choice sets in a building-level framework, the lowest level of spatial disaggregation available for modeling residential choices. Third, it explicitly examined the influence of non-work accessibility at both the local- and person-...

Read more
Post date: Tue, 11/25/2014 - 1:21pm
Event Date:
Apr 23, 2010
Content Type: Events

The video begins at 2:21.

Abstract:

Adaptive signal systems have been deployed in a number of locations across the country though their high maintenance requirements and additional cost have limited their widespread use. Adaptive systems adjust phases and timings at a network of signals in real time to improve traffic operations, particularly along congested corridors.

Rhythm Engineering has developed a new video detection-based system that vastly reduces the cost of deployment and maintenance. However, no existing microsimulation software could model the system due to its innovative methodology.

The methodology involves doing away completely with concept of cycle lengths, splits, and offsets, key parameters use in traffic signal analysis today. HDR and Rhythm Engineering joined together to develop a tool to act as middleware between the adaptive system and VISSIM that would emulate video detection, send the "video" to the adaptive controller, run the adaptive controller algorithm, and transmit detector calls back to VISSIM for inclusion in the model.

This presentation will discuss the lessons learned in the development of the emulation of video detection within VISSIM as well as showing the improvements in traffic operations provided by the system. It will also discuss the implications of the system's architecture and the impact it will have on not only adaptive signal systems...

Read more
Post date: Tue, 11/25/2014 - 1:07pm
Event Date:
May 28, 2010
Content Type: Events

View slides

Abstract: Existing regional travel forecasting systems are not typically set up to forecast usage of bicycle infrastructure and are insensitive to bicyclists' route preferences in general. We collected revealed preference, GPS data on 162 bicyclists over the course of several days and coded the resulting trips to a highly detailed bicycle network model. We then use these data to estimate bicyclist route choice models. As part of this research, we developed a sophisticated choice set generation algorithm based on multiple permutations of labeled path attributes, which seems to out-perform comparable implementations of other route choice set generation algorithms. The model was formulated as a Path-Size Logit model to account for overlapping route alternatives. The estimation results show compelling intuitive elasticities for route choice attributes, including the effects of distance and delay; avoiding high-volumes of vehicular traffic, stops and turns, and elevation gain; and preferences for certain bike infrastructure types, particularly at bridge crossings and off-street paths. Estimation results also support segmentation by commute versus non-commute trip types, but are less clear when it comes to gender. The final model will be implemented as part of the regional travel forecasting system for Portland, Oregon, U.S.A.
Post date: Tue, 11/25/2014 - 1:04pm
Event Date:
Jun 04, 2010
Content Type: Events

View slides

Abstract: We propose to decompose residential self-selection by understanding its formation process. We take a life course perspective and postulate that locations experienced early in life have a lasting effect on our locational preferences in life. In other words, what was experienced spatially is a key factor contributing to our residential self-selection and our preferences in residential locations are formed long before our own self-selection begins.  We further hypothesize that prior locational influence interacts with period effect such that the same location experienced in different periods may have distinct effects.  Using an empirically collected dataset in the New York Metropolitan Region, we estimated a series of models to test these hypotheses. The results demonstrate that prior locational influence precedes residential self-selection. Furthermore, we show a variety-seeking behavioral pattern resulted from locations experienced during adolescence.

Post date: Mon, 11/24/2014 - 4:45pm
Event Date:
Oct 29, 2010
Content Type: Events

Video begins at 3:33.

Tags
Post date: Mon, 11/24/2014 - 4:09pm
Event Date:
Feb 04, 2011
Content Type: Events

The video begins at 2:26.

Abstract: This report offers a new view of urban transportation performance. It explores the key role that land use and variations in travel distances play in determining how long Americans spend in peak hour travel. It shows how the key tool contained in the Urban Mobility Report – the Travel Time Index – actually penalizes cities that have shorter travel distances and conceals the additional burden caused by longer trips in sprawling metropolitan areas. Finally, it critically examines the reliability and usefulness of the methodology used in the Urban Mobility Report, finding it does not accurately estimate travel speeds, it exaggerates travel delays, and it overestimates the fuel consumption associated with urban travel. How we measure transportation systems matters, and the nation needs a better set of measures than it has today.

Tags
Post date: Mon, 11/24/2014 - 1:26pm
Event Date:
Jan 20, 2012
Content Type: Events

The video begins at 2:51.

Adam Moore: Bus Stop Air Quality: An Empirical Analysis of Exposure to Particulate Matter at Bus Stop Shelters

Congested traffic corridors in dense urban areas are key contributors to the degradation of urban air quality. While waiting at bus stops, transit patrons may be exposed to greater amounts of vehicle-based pollution, including particulate matter, due to their proximity to the roadway. Current guidelines for the location and design of bus stops do not take into account air quality or exposure considerations. This study compares the exposure of transit riders waiting at three-sided bus stop shelters that either: 1) face the roadway traffic or 2) face away from the roadway traffic. Shelters were instrumented with air quality monitoring equipment, sonic anemometers, and vehicle counters. Data were collected for two days at three shelters during both the morning and afternoon peak periods. Bus shelter orientation is found to significantly affect concentration of four sizes of particulate matter: ultrafine particles, PM1, PM2.5, and PM10. Shelters with an opening oriented towards the roadway were consistently observed to have higher concentrations inside the shelter than outside the shelter. In contrast, shelters oriented away from the roadway were observed to have lower concentrations inside the shelter than outside the shelter. The differences in particulate matter...

Read more
Post date: Fri, 11/21/2014 - 3:59pm
Event Date:
Oct 19, 2012
Content Type: Events

The video begins at 2:00.

View slides

Abstract: Urban arterials often represent complex venues of transportation operations, co-mingling non-motorized users with transit services and a wide variety of land uses and traffic patterns. This presentation presents results related to the evaluation of a new Adaptive Traffic Control System (SCATS) on Powell Boulevard in southeast Portland. The presentation will discuss challenges and opportunities associated with the evaluation of new technologies and the development of comprehensive urban arterial performance measures.

Speaker Bio: Miguel Figliozzi is an Associate Professor of Civil and Environmental Engineering at Portland State University. His diverse research interests include transit and traffic operations, bicycle and pedestrian modes, emissions and air quality modeling, and freight and logistics. He holds a MS from the University of Texas at Austin and a PhD from the University of Maryland College Park. Figliozzi is a member of the Transportation Research Board Network Modeling Committee, Freight and Logistics, and Intermodal Terminal Design Committees. Papers, reports, and more detailed information available at Figliozzi's webpage: http://web.cecs.pdx.edu/~...

Read more
Post date: Fri, 11/21/2014 - 3:53pm
Event Date:
Oct 26, 2012
Content Type: Events

The video begins at 1:55.

View slides

Abstract: Traffic counts are an important piece of information used by transportation planners; however, while count programs are common for motor vehicles most efforts at counting non-motorized traffic – cyclists and pedestrians – are minimal. Long-term, continuous counts of non-motorized traffic can be used to estimate month of year and day of week adjustment factors that can be used to scale short-duration counts to estimates of annual average daily traffic. Here we present results from continuous counts of non-motorized traffic at 6 locations on off-street trails in Minneapolis, MN using two types of automated counters (active infrared and inductive loop detectors). We found that traffic volumes varied significantly by location, but the month of year and day of week patterns were mostly consistent across locations and mode (i.e., cycling, walking, or mixed mode). We give examples of how this information could be used to extrapolate short-duration counts to estimates of annual average daily traffic as well as Bicycle Miles Traveled (BMT) and Pedestrian Miles Traveled (PMT) for defined lengths of off-street trails. More research is needed to determine if non-motorized traffic patterns (and subsequently our adjustment factors) for...

Read more

Pages