Nov 23, 2015

A new NITC project has developed a robust pedestrian demand estimation tool, the first of its kind in the country.

Using the tool, planners can predict pedestrian trips with spatial acuity.

The research was completed in partnership with Oregon Metro, and will allow Metro to allocate infrastructure based on pedestrian demand in the Portland, Oregon metropolitan area.

In a previous project completed last year as part of the same partnership, the lead investigator, Kelly Clifton, developed a way to collect data about the pedestrian environment on a small, neighborhood scale that made sense for walk trips. For more about how that works, click here to read our news coverage of that project. 

Following the initial project, the next step was to take that micro-level pedestrian data and use it to predict destination choice. For every walk trip generated by the model in the first project, this tool matches it to a likely destination based on traveler characteristics and environmental attributes.

Patrick Singleton, a graduate student researcher at Portland State...

Read more
Apr 27, 2015

A new study led by Miguel Figliozzi of Portland State University provides a microscopic evaluation of how two advanced traffic control technologies work together.

Powell Boulevard, an east-west arterial corridor in southeast Portland, Oregon, has been the focus of several research studies by Figliozzi’s TTP research lab. The street is a key route for public transit buses as well as pedestrians and cars, but heavy traffic at peak hours often results in delays.

On Powell there are two systems operating concurrently: a demand-responsive traffic signal system called Sydney Coordinated Adaptive Traffic System (SCATS) and a Transit Signal Priority (TSP) system. The TSP in the Portland metro region is designed to give priority to late buses and to boost transit performance.

In previous studies Figliozzi’s lab has analyzed a multitude of factors on Powell Boulevard including traffic congestion, transit times, air quality and cyclists’ intake of air pollutants, and a before/after evaluation of SCATS.

For this study, the researchers used a novel approach to evaluate how well SCATS and TSP work together by integrating three major data sources and video recordings at individual intersections.

Figliozzi’s team worked closely with TriMet and the City of Portland to...

Read more
Apr 13, 2015

Watch video

View slides

New FHWA VMT Forecasts and Implications for Local Planning

or

Post-Apocalyptic Zombies Ate Oregon’s Post-Recession, ATR Regression

Where: Room 204 of the Distance Learning Center Wing of the Urban Center at PSU

A summary of FHWA’s new national traffic trends assessment will be presented, including discussion of varied factors influencing forward-thinking forecasts. Examples of Oregon statewide vehicle miles travelled (VMT) and historic traffic trends from ATR stations in the Portland urban region and greater Willamette Valley will be highlighted. VMT, population and income data will be noted with implications on local transportation planning.

Andrew is an associate with David Evans & Associates, Inc., with over 28 years of experience in multimodal transportation planning with emphasis on sustainable community and Complete Street policy and plan development. He focuses on developing multimodal transportation plans with context-sensitive street standards and policies that implement enhanced bicycle and pedestrian use and circulation. His area of expertise includes measured pedestrian-access-to-transit connectivity, the implementation of...

Read more
Apr 13, 2015

Watch video

View slides

There is growing support for improvements to the quality of the walking environment, including more investments to promote pedestrian travel. Planners, engineers, and others seek improved tools to estimate pedestrian demand that are sensitive to environmental and demographic factors at the appropriate scale in order to aid policy-relevant issues like air quality, public health, and smart allocation of infrastructure and other resources. Further, in the travel demand forecasting realm, tools of this kind are difficult to implement due to the use of spatial scales of analysis that are oriented towards motorized modes, vast data requirements, and computer processing limitations.

To address these issues, a two-phase project between Portland State University and Oregon Metro is underway to develop a robust pedestrian planning method for use in regional travel demand models. The first phase, completed in 2013, utilizes a tool that predicts the number of walking trips generated with spatial acuity, based on a new measure of the pedestrian environment and a micro-level unit of analysis. Currently, phase two is building upon this tool to predict the distribution of walking trips, connecting the origins predicted in phase one to...

Read more
Apr 13, 2015

Watch video

View slides

Where: Room 204 of the Distance Learning Center Wing of the Urban Center at PSU

The ability to forecast future transportation patterns under a particular land-use scenario or urban form is key to making informed decisions at the local and regional levels.

Although several researchers have explored the links between the built environment, socio-demographics and travel behavior, a consensus is not reached.

This talk highlights two recent projects. The first project focuses on individuals’ attitudes towards transportation, neighborhood characteristics and their effects on campus commuters’ transit use, and addresses the question whether attitudes, the built environment or a combination of both explains the resulting transit use better.

The second part presents the Regional Land Use Allocation Decision Analysis Tool developed for The Ohio Department of Transportation, which enables decision makers to quantify the impacts of population and employment distribution in terms of the resulting VMT (Vehicle Miles Traveled). This tool forecasts the impacts of future land-use policies in Ohio, based on alternative assumptions of highway and mass transit corridor development, zoning and...

Read more
Mar 20, 2015

Watch video

View slides

Where: Room 204 of the Distance Learning Center Wing of the Urban Center at PSU

DASH is the next generation activity based model being developed by the Metro Research Center. Upon completion, it will be one of the most advanced in the nation. This model will be used extensively in estimating the activity and travel response of individuals to policies and infrastructure investments. Compared to past models, it will include enhanced consideration of the socio-economic roles of individuals, discrete temporal dynamics, and intra-household dependencies.

Richard Walker is the manager for the Modeling Services Division at Metro. He manages the technical elements of all programs related to travel and landuse forecasting: including data collection, model development, and model applications. In addition, Mr. Walker currently serves as the chair of the Oregon Modeling Steering Committee – a statewide entity formed to promote collaboration between Oregon modeling agencies with regard to model development activities. As a recipient of a BS degree in civil engineering from Montana State University, he has been a member of the modeling...

Read more
Jan 14, 2015

The video begins at 0:27.

Pages