Nov 21, 2014

The video begins at 4:30.

The San Francisco Bay Area, like other metropolitan regions in California, is in the process of developing regional plans to reduce greenhouse gas emissions in response to state legislation that sets targets for such reduction, and prescribes that Metropolitan Planning Organizations develop Sustainable Communities Strategies that leverage changes in land use patterns in combination with transportation investments, that will meet those targets. This talk describes the land use modeling that is being used, in combination with the activity-based transportation model system at the Metropolitan Transportation Commission, to analyze alternative combinations of land use policies and transportation policies. It also will demonstrate visualization technology that has been developed to facilitate community engagement in the process

Speaker Bio: Paul Waddell is Professor and Chair of the City and Regional Planning Department at the University of California, Berkeley. He teaches and conducts research on land use and transportation modeling and planning. He designed and leads the development of the UrbanSim land use modeling platform, now being used in metropolitan planning organizations across the U.S., and in research projects throughout the world.

Nov 21, 2014

Special Seminar: Room 315 of the Maseeh College of Engineering & Computer Science on the Portland State University campus.

Florida’s Turnpike Enterprise has completed planning studies to forecast the revenue earning potential of tolled special use lanes along Interstates in Florida. The tolled special use lanes or “Managed Lanes” will be contained within the interior of the Interstates' highway corridors. The Managed Lanes concept has been incorporated into larger widening projects in Central and South Florida, which is under development by the Florida Department of Transportation. The presentation will focus on the approach and methodology for estimating traffic and revenue for Express Toll Lanes in an existing limited access corridor. The core content is the required data, traffic modeling efforts, and how the results are used by the Finance Department to estimate potential revenues.

Bio: Jack Klodzinski received his Bachelors’, Master’s and Ph.D. in Civil Engineering from the University of Central Florida where his focus was on toll road operations. He is now the Travel Forecast Manager at Florida’s Turnpike for the URS Corporation where his main focus is on traffic forecasting for toll facilities. He works with a team of modelers to produce toll traffic forecasts used in roadway design, operations, or future revenue estimates. Jack also stays active with UCF as a Graduate Faculty Scholar for the Department of Civil, Environmental, and Construction...

Read more
Nov 18, 2014

Watch video

View slides

Summary: Ten new megatrends will be presented with a discussion on the resulting shifts on the transportation industry. Details will include a look on broken trends and the new challenges introduced for transportation planning. Thoughts will also be presented introducing a pivot to the current model being pursued by the Connected Vehicle program. Finally, planners will be challenged to consider a new question for the future of our connected communities, you have to come to hear it.

Bio: Ted Trepanier is the Senior Director for the Public Sector with INRIX, Inc.  Prior to joining INRIX, Ted was the Director of Traffic Operations for the Washington State Department of Transportation.  In addition to his extensive background in traffic operations, he has experience in design, planning, project management and toll operations. Ted earned his Bachelor's Degree in Civil Engineering from Washington State University and Masters in Civil Engineering from the University of Washington.

Nov 16, 2014

The video begins at 0:47.

View slides

The modelling of dependence relations between random variables is a typically studied subject in probability theory and statistics. In the recent decade, the concept of copula gained enormous success in finance and economics in the risk management and analysis context. Engineers started investigating the applications of copula in recent years; it has been widely used in Hydrology and climate studies to model rainfall and overspill risk. As a powerful tool to model dependence, copula has been applied to travel behavior modeling and model choice by several researchers. Dr. Wang will share his understanding of copula and its implications to engineers and planners in a more general uncertainty modeling framework. Some of the ongoing research efforts regarding how copula is being applied to transportation network entrance-ramp flow dependency and spatial-temporal travel time reliability study at Oregon State University.

Speaker Bio: Dr. Wang recently joined OSU from the Trine University in Angola, Indiana where he worked as assistant professor with the Reiners Department of Civil and Environmental Engineering. Before joining Trine University, he spent a short time as a research associate with Institute for Multimodal Transportation...

Read more
Nov 12, 2014

The video begins at 0:49.

It has been nearly 25 years since non-motorized modes and non-motorized-specific built environment measures were first included in the regional travel demand models of metropolitan planning organizations (MPOs). Such modeling practices have evolved considerably as data collection and analysis methods improve, decisions-makers demand more policy-responsive tools, and walking and cycling grow in popularity. Many models now explicitly consider the unique characteristics of walking travel, separate from travel by bicycle. As MPOs look to enhance their models’ representations of pedestrian travel, the need to understand current and emerging practice is great.

This project presents a comprehensive review of the practice of representing walking in MPO travel models. A review of model documentation determined that – as of mid-2012 – 63% (30) of the 48 largest MPOs included non-motorized travel in their regional models, while 47% (14) of those also distinguished between walk and bicycle modes. The modeling frameworks, model structures, and variables used for pedestrian and non-motorized regional modeling are described and discussed. A survey of MPO staff members revealed barriers to modeling non-motorized travel, including insufficient travel survey records, but also innovations being implemented, including smaller zones and non-motorized network assignment. Finally, best practices in...

Read more
Nov 12, 2014

The video begins at 0:47.

Topic: Schedule-based Public Transportation Planning Model and Integration with Other Transportation Planning Models

Speaker Hyunsoo Noh, a PhD Candidate from the University of Arizona, will discuss the integration of schedule-based public transportation and other transporation planning models.

Nov 12, 2014

The video begins at 1:18.

View slides

Summary: Dr. Lovell will talk about three projects funded by NASA and the FAA, addressing congestion in the National Airspace System. Dr. Lovell's team developed diffusion-based queuing models of individual airports that could support better building blocks for network-wide congestion models. The advantage of the new models is their flexibility with respect to input distributions. In a study for the FAA, Dr. Lovell's team developed day-of-operations collaboration "languages" suitable for the FAA and individual carriers in order to collectively manage expected airspace disruptions. Finally, he will discuss a study on predictability in the airspace, with a focus on scheduled block times.

Dr. Lovell is an Associate Professor with joint appointments in the Department of Civil and Environmental Engineering and the Institute for Systems Research. He is a member of the faculty of the Applied Mathematics, Statistics, and Scientific Computation Program. He is director of the University of Maryland chapter of Engineers Without Borders - USA, and serves that organization on its board and as a leader of one of its Technical Advisory Councils. Dr. Lovell received his B.A. in Mathematics from Portland State University in 1990, and M.S. and Ph.D. degrees in Civil Engineering from the University...

Read more
Nov 12, 2014

The video begins at 0:27.

View slides

Summary: The Transportation Planning Analysis Unit (TPAU) at ODOT helps to provide information to a large variety of transportation plans, projects, and policy questions.  This allows customers to make better informed decisions and to maximize limited resources.  In order to fill this role TPAU and the Oregon modeling community have a fairly large "toolbox" of models and analysis tools and procedures.  This transportation seminar will give an overview of the role and services that TPAU provides and the different tools and processes used to fulfill that role.

Nov 12, 2014

Watch video

View slides

Summary: A growing concern related to large-truck crashes has increased in the State of Texas in recent years due to the potential economic impacts and level of injury severity that can be sustained. Yet, studies on large truck involved crashes highlighting the contributing factors leading to injury severity have not been conducted in detail in the State of Texas especially for its interstate system.  In this study, we analyze the contributing factors related to injury severity by utilizing Texas crash data based on a discrete outcome based model which accounts for possible unobserved heterogeneity related to human, vehicle and road-environment. We estimate a random parameter logit model (i.e., mixed logit) to predict the likelihood of five standard injury severity scales commonly used in Crash Records Information System (CRIS) in Texas – fatal, incapacitating, non-incapacitating, possible, and no injury (property damage only). Estimation findings indicate that the level of injury severity outcomes is highly influenced by a number of complex interactions between factors and the effects of the some factors can vary across observations. The contributing factors include drivers’ demographics, traffic flow condition, roadway geometrics, land use and temporal characteristics, weather, and lighting...

Read more
Nov 12, 2014

Watch video

View slides: Bell Presentation (PDF)

Moore Presentation (PDF)

Ma Presentation (PDF)

Summaries: 
Identification and Characterization of PM2.5 and VOC Hot Spots on Arterial Corridor by Integrating Probe Vehicle, Traffic, and Land Use Data: The purpose of this study is to explore the use of integrated probe vehicle, traffic and land use data to identify and characterize fine particulate matter (PM2.5) and volatile organic compound (VOC) hot spot locations on urban arterial corridors. An emission hot spot is defined as a fixed location along a corridor in which the mean pollutant concentrations are consistently above the 85th percentile of pollutant concentrations when considering all other locations along the corridor during the same time period. In order to collect data for this study, an electric vehicle was equipped with instruments designed to measure PM2.5 and VOC concentrations. Second-by-second measurements were performed for each pollutant from both the right and left sides of the vehicle. Detailed meteorological, traffic and land use data is also available for this research. The results of a statistical analysis are used to better understand which...

Read more

Pages