Travel-time variability is a noteworthy factor in network performance. It measures the temporal uncertainty experienced by users in their movement between any two nodes in a network. The importance of the time variance depends on the penalties incurred by the users. In road networks, travelers consider the existence of this journey uncertainty in their selection of routes. This choice process takes into account travel-time variability and other characteristics of the travelers and the road network. In this complex behavioral response, a feasible decision is…Read more
Travel-time variability is a noteworthy factor in network performance. It measures the temporal uncertainty experienced by users in their movement between any two nodes in a network. The importance of the time variance depends on the penalties incurred by the users. In road networks, travelers consider the existence of this journey uncertainty in their selection of routes. This choice process takes into account travel-time variability and other characteristics of the travelers and the road network. In this complex behavioral response, a feasible decision is spawned based on not only the amalgamation of attributes, but also on the experience travelers incurred from previous situations. Over the past several years, the analysis of these behavioral responses (travelers’ route choices) to fluctuations in travel-time variability has become a central topic in transportation research. These have generally been based on theoretical approaches built upon Wardropian equilibrium, or empirical formulations using Random Utility Theory. This report focuses on the travel behavior of commuters using Interstate 394 (I-394) and the swapping (bridge) choice behavior of commuters crossing the Mississippi River in Minneapolis. The inferences of this report are based on collected Global Positioning System (GPS) tracking data and accompanying surveys. Furthermore, it also employs two distinct approaches (estimation of Value of Reliability [VOR] and econometric modeling with travelers’ intrapersonal data) in order to analyze the behavioral responses of two distinct sets of subjects in the Minneapolis-Saint Paul (Twin Cities) area.