Skip to main content
Home

Main navigation

  • About
    • About TREC
    • Our Staff
    • Our Researchers
    • Contact Us
  • News
    • Latest News
    • Join Our Mailing List
    • Media Coverage
  • Events
    • Upcoming Events
    • Past Events
  • Research and Data
    • Researchers
    • All Projects
    • Final Reports
    • PORTAL: Portland-Vancouver
    • BikePed Portal: National
  • Our Students
User account menu
  • Log in

Exploratory Methods for Truck Re-identification in a Statewide Network Based on Axle Weight and Axle Spacing Data to Enhance Freight Metrics: Phase 2

Principal Investigator:

Christopher Monsere, Portland State University

Co-Investigators:

  • Mecit Cetin, Old Dominion University Civil & Environmental Engineering
  • Andrew Nichols, Marshall University

Summary:

Vehicle re-identification methods can be used to anonymously match vehicles crossing two different locations based on vehicle attribute data. This research builds upon a previous study and investigates different methods for solving the re-identification problem and explores some of the factors that impact the accuracy of the results. To support this work, archived data from weigh-in-motion (WIM) s... Vehicle re-identification methods can be used to anonymously match vehicles crossing two different locations based on vehicle attribute data. This research builds upon a previous study and investigates different methods for solving the re-identification problem and explores some of the factors that impact the accuracy of the results. To support this work, archived data from weigh-in-motion (WIM) stations in Oregon are used for developing, calibrating, and testing vehicle re-identification algorithms. In addition to the Bayesian approach developed by the researchers in the previous study, a neural network model is developed for solving the re-identification problem. The results from the testing datasets showed that both methods can be effective in solving the re-identification problem while the Bayesian method yields more accurate results. A comprehensive analysis is performed to investigate the key factors impacting the accuracy of the results. The analyses are performed by employing the Bayesian algorithm to match commercial vehicles that cross upstream and downstream pairs of WIM sites that are separated by long distances ranging from 70 to 214 miles. Data from 14 different pairs of WIM sites are used to evaluate how matching accuracy is impacted by various factors such as the distance between two sites, travel time variability, truck volumes, and sensor accuracy or consistency of measurements. After running the vehicle re-identification algorithm for each one of these 14 pairs of sites, the matching error rates are reported. The results from the testing datasets showed a large variation in terms of accuracy. It is found that sensor accuracy and volumes have the greatest impacts on matching accuracy whereas the distance alone does not have a significant impact. Overall, for estimating travel times and origin-destination flows between two WIM sites, the methods developed in this project can be used to effectively match commercial vehicles crossing two data collection sites that are separated by long distances. See More

Project Details

Project Type: Research
Project Status: Completed
End Date: May 31, 2011
UTC Funding: $98,000

Downloadable Products

  • OTREC-RR-12-04 Exploratory Methods for Truck Re-identification in a Statewide Network Based on Axle Weight and Axle Spacing Data to Enhance Freight Metrics: Phase 2 (FINAL_REPORT)
  • Truck Reidentification (PROJECT_BRIEF)

Research NITC

  • Projects
  • Final Reports
  • NITC Researchers
  • Grant Funding
    • Overview
    • Requirements and Forms
    • Researcher Login
  • Curriculum: K-12 and University

 

© 2024 | National Institute for Transportation and Communities | 503-725-8545 | asktrec@pdx.edu