Watch video

View slides

Summary: Since about 2008, the planning world has been experiencing a paradigm shift that began in places like California and Oregon that have adopted legislation requiring the linking of land use and transportation plans to outcomes, specifically to the reduction of greenhouse gases (GHGs). In response to this need, Calthorpe Associates has developed a new planning tool, called UrbanFootprint, on a fully Open Source platform (i.e. Ubuntu Linux, PostGIS, PostGreSQL, etc.). As a powerful and dynamic web and mobile-enabled geo-spatial scenario creation and modeling tool with full co-benefits analysis capacity, UrbanFootprint has great utility for urban planning and research at multiple scales, from general plans, to project assessments, to regional and state-wide scenario development and analysis. Scenario outcomes measurement modules include: a powerful ‘sketch’ transportation model that produces travel and emissions impacts; a public health analysis engine that measures land use impacts on respiratory disease, obesity, and related impacts and costs; climate-sensitive building energy and water modeling; fiscal impacts analysis; and greenhouse gas and other emissions modeling.

Bio: Garlynn Woodsong is a Project Manager in the regional and large-...

Read more

View slides

The video begins at 5:58.

Abstract: An overview will be presented on key policies to reduce greenhouse gas emissions in our transportation system, and the health outcomes tied with those policies. The results come from the first-ever, formal Health Impact Assessment done on a climate change policy, coordinated by Upstream Public Health, and conducted by Oregon Health Science University and Human Impact Partners. Key health impacts related to changes in air pollution, physical activity and collisions will be presented for each of the 11 policies related to reduced driving. A new, ground-breaking study will also be presented on scenario planning that was conducted in London and New Delhi, that could be a model for how scenario planning can be conducted in Oregon.

Watch video

View slides

Summary: Urban bicyclists’ uptake of traffic-related air pollution is still not well quantified, due to a lack of direct measurements of uptake and a lack of analysis of the variation in uptake. This paper describes and establishes the feasibility of a novel method for measuring bicyclists’ uptake of volatile organic compounds (VOC) by sampling breath concentrations. Early results from the data set demonstrate the ability of the proposed method to generate findings for transportation analysis, with statistically significant exposure and uptake differences from bicycling on arterial versus bikeway facilities for several traffic-related VOC. These results provide the first empirical evidence that the usage of bikeways (or greenways) by bicyclists within an urban environment can significantly reduce uptake of dangerous traffic-related gas pollutants. Dynamic concentration and respiration data reveal unfavorable correlations from a health impacts perspective, where bicyclists’ respiration and travel time are greater at higher-concentration locations on already high-concentration roadways (arterials).

Bio: Alex Bigazzi is a Ph.D. candidate in Transportation Engineering at PSU, where he is also teaching a class on transportation emissions modeling....

Read more

ITS Lab (Engineeering 315)

Abstract: Despite the never-ending cascade of depressing economic developments recently, there are some encouraging new trends to be discovered. Some of these trends relate to the vehicles we buy and how we drive them, and the consequences of these actions. In this presentation, I will discuss several new findings about the positive influences of the recent economic changes on (1) the fuel efficiency of purchased new vehicles, (2) the amount and type of driving that we do, (3) how much carbon dioxide emissions we produce from driving, and (4) the number of road fatalities.

Bio: Dr. Michael Sivak is a Research Professor and the Head of the Human Factors Division of the University of Michigan Transportation Research Institute (UMTRI). He received his Ph.D. in Experimental Psychology from the University of Michigan. Dr. Sivak's primary expertise is in perceptual and cognitive aspects of driving. Examples of his recent research topics include human-factors aspects of vehicle design, bounded rationality and driver behavior, and the relative risks of flying and driving. In 2001, he was named a Distinguished Research Scientist by the University of Michigan. In 2006, he received the A.R. Lauer Award from the Human Factors and Ergonomics Society for outstanding contributions to human aspects of the broad area of safety.

The video begins at 2:00.

View slides

Abstract: Urban arterials often represent complex venues of transportation operations, co-mingling non-motorized users with transit services and a wide variety of land uses and traffic patterns. This presentation presents results related to the evaluation of a new Adaptive Traffic Control System (SCATS) on Powell Boulevard in southeast Portland. The presentation will discuss challenges and opportunities associated with the evaluation of new technologies and the development of comprehensive urban arterial performance measures.

Speaker Bio: Miguel Figliozzi is an Associate Professor of Civil and Environmental Engineering at Portland State University. His diverse research interests include transit and traffic operations, bicycle and pedestrian modes, emissions and air quality modeling, and freight and logistics. He holds a MS from the University of Texas at Austin and a PhD from the University of Maryland College Park. Figliozzi is a member of the Transportation Research Board Network Modeling Committee, Freight and Logistics, and Intermodal Terminal Design Committees. Papers, reports, and more detailed information available at Figliozzi's webpage: http://web.cecs.pdx.edu/~maf/

Lewison Lem, Principal Consultant of Parsons Brinckerhoff, on reducing the climate impact of the transportation system.

View paper: Transportation Strategies to Mitigate Climate Change

View slides

The video begins at 1:49.

The video begins at 0:52.

Abstract:  This seminar concludes the eight week exploration of transportation models and decision tools with a look to the future. Oregon is known for its history of forward thinking policies around sustainable transportation, including linking land use and transportation planning at the regional level, investments in transit and non-motorized modes, and statewide legislation to reduce greenhouse gas emissions. To aid these transportation planning and policy decisions, Oregon has developed some of the most sophisticated models and analytic tools currently in use in the United States. As Oregon moves forward to address the next set of challenges - energy security, climate change, economic constraints and equity, models will need to provide new information at different spatial and temporal scales to support long range planning - 30 to 50 years out - as well as near term decisions - 1 to 5 years ahead. Beth Wemple, a Portland-based consultant with Cambridge Systematics, will share her view on Oregon's transportation future. Keith Lawton, consultant and former transportation planner at Metro, will respond by discussing the next steps for model development and application needed to support this agenda.

Speaker Bio: Keith Lawton is a transport modeling consultant and past Director of Technical services, Metro Planning Department, Portland, OR. He has been active in model...

Read more

Watch video

View slides

Health risks associated with air pollution uptake while bicycling are often cited as a potential drawback to increased bicycling in cities. This seminar will provide an overview of how roadway and travel characteristics impact bicyclists' uptake of traffic-related air pollution. Specific considerations for planners and designers of urban transportation systems to mitigate risks for travelers will be discussed. In addition, the extent to which bicyclists themselves can unilaterally reduce their pollution uptake will be described. This seminar synthesizes findings from a recently completed doctoral dissertation at Portland State University and from the broader literature.

Alex... Read more

Watch video

Abstract: Climate change may be the most serious and urgent issue facing the transportation sector. Transportation is both a major producer of greenhouse gas (GHG) emissions and is also vulnerable to the consequences of climate change. Major reductions in GHG emissions from the transportation sector will be needed in order to avoid the most serious effects of climate change. Travel models can play an important role in evaluating strategies for reducing transportation sector GHG emissions, but prevailing travel models do not address a number of factors that significantly affect GHG emissions. The GreenSTEP model was developed to fill this gap. The model estimates household level vehicle travel, energy consumption, and GHG emissions. GreenSTEP is currently being used to assist the development of ODOT's Statewide Transportation Strategy for reducing GHG emissions and Metro's Climate Smart Communities scenario planning process.

Speaker Bio: Brian Gregor is a senior transportation analyst for the Oregon Department of Transportation (ODOT) where for the past 15 years he has worked on a variety of transportation and land use modeling and analysis projects. He is the principal developer of the GreenSTEP and Land Use Scenario DevelopeR (LUSDR) models. He has also worked on the development and application of Oregon's Statewide Integrated Model (SWIM), lead the automation of ODOT's modeling processes...

Read more

Pages