View slides

Watch video:

Rerouting Mode Choice Models

For a number of reasons—congestion, public health, greenhouse gas emissions, energy use, demographic shifts, and community livability to name a few—the importance of walking and bicycling as transportation options will only continue to increase. Currently, policy interest and infrastructure funding for nonmotorized modes far outstrip our ability to successfully model bike and walk travel. ​​In the past five years, we have learned a lot about ​where people prefer to bike and walk, but what can that tell us about whether people will bike or walk in the...

Read more

Watch video

View slides: Bell Presentation (PDF)

Moore Presentation (PDF)

Ma Presentation (PDF)

Summaries: 
Identification and Characterization of PM2.5 and VOC Hot Spots on Arterial Corridor by Integrating Probe Vehicle, Traffic, and Land Use Data: The purpose of this study is to explore the use of integrated probe vehicle, traffic and land use data to identify and characterize fine particulate matter (PM2.5) and volatile organic compound (VOC) hot spot locations on urban arterial corridors. An emission hot spot is defined as a fixed location along a corridor in which the mean pollutant concentrations are consistently above the 85th percentile of pollutant concentrations when considering all other locations along the corridor during the same time period. In order to collect data for this study, an electric vehicle was equipped with instruments designed to measure PM2.5 and VOC concentrations. Second-by-second measurements were performed for each pollutant from both the right and left sides of the vehicle. Detailed meteorological, traffic and land use data is also...

Read more

The video starts at 0:58.

View slides

Abstract: Walking and bicycling are being promoted as transportation options that can increase the livability and sustainability of communities, but the automobile remains the dominant mode of transportation in all United States metropolitan regions. In order to change travel behavior, researchers and practitioners need a greater understanding of the mode choice decision process, especially for walking and bicycling.

This presentation will summarize dissertation research on factors associated with walking and bicycling for routine travel purposes, such as shopping. More than 1,000 retail pharmacy store customers were surveyed in 20 San Francisco Bay Area shopping districts in fall 2009, and 26 follow-up interviews were conducted in spring and summer 2010. Mixed logit models showed that walking was associated with shorter travel distances, higher population densities, more street tree canopy coverage, and greater enjoyment of walking. Bicycling was associated with shorter travel distances, more bicycle facilities, more bicycle parking, and greater enjoyment of bicycling. Respondents were more likely to drive when they perceived a high risk of crime, but automobile use was discouraged by higher employment densities, smaller parking lots,...

Read more

PRESENTATION ARCHIVE

Miss the webinar or want a look back?

OVERVIEW

The "Fast Track" project at the University of Oregon focuses on a mode of transportation that is sometimes left out of vehicle-to-infrastructure, or V2I, conversations: Bicycling. NITC researchers developed an app based on a new technology being integrated into modern cars: GLOSA, or Green Light Optimized Speed Advisory. GLOSA allows motorists to set their speed along corridors to maximize their chances of catching a "green wave" so they won't have to stop at red lights.

This project demonstrates how GLOSA can be used by bicyclists in the same way it is used by motorists, with a test site on a busy car and bike corridor feeding the University of Oregon campus: 13th Avenue in Eugene, Oregon. Researchers developed a smartphone app that tells a cyclist whether they should adjust their speed to stay in tune with the signals and catch the next green. The project demonstrates how university researchers, city traffic engineers, and signal-controller manufacturers can come together to help bicyclists be active participants in a smart transportation...

Read more

PRESENTATION ARCHIVE

Active travel such as walking and bicycling can lead to health benefits through an increase in physical activity. At the same time, more active travelers breath more and so can experience high pollution inhalation rates during travel. This webinar will review the state of knowledge about how roadway and traffic characteristics impact air pollution risks for bicyclists, including the latest PSU research quantifying bicyclists' uptake of traffic-related air pollution using on-road measurements in Portland. The PSU research team including Alex Bigazzi, Jim Pankow, and Miguel Figliozzi quantified bicyclist exposure concentrations on different types of roadways, respiration responses to exertion level, and changes in blood concentrations of pollutants. Implications for planners, engineers, and policy-makers will be discussed, including guidance for more pollution-conscious bicycle network planning and design. Additionally, ways for individual travelers to reduce their air pollution risks will be discussed.

This 60-minute webinar is eligible for one hour of training which equals 1 CM or 1 PDH. NITC applies to the AICP for Certification Maintenance credit for each webinar. We will provide an attendance certificate...

Read more

Watch video

View slides

Summary: In this seminar, Tara Weidner will discuss changes in the works to the State Analysis Procedures Manual (APM) to include three graduated levels of bike planning methods for use in Oregon communities, based on community size, data needs, and planning stage.  These include the Bike Level of Traffic Stress (BLTS), a sketch tool used to assess bike network connectivity, the data-heavy Highway Capacity Manual Multi-modal Level of Service (MMLOS) procedures, and a simplified MMLOS developed by the same researchers. 

Bio: Tara Weidner is an Integrated Transportation Analysis Engineer in ODOT’s Transportation Planning Analysis Unit (TPAU).  She has over 20 years of experience in modeling and analysis of multi-modal transportation systems. Her work focuses on arming Oregon’s communities with tools to plan for the future, including being the lead on ODOT’s GreenSTEP Greenhouse Gas model and coordinating other multi-modal transportation and land use tools and analysis. She joined TPAU about a year ago after working as a Senior Planner for Parsons Brinkerhoff (PB), where she was the consultant lead for the ODOT StateWide Integrated Model (SWIM) and worked with the FHWA on Mega-Regions modeling tools and managed a webinar series on "Climate Change Planning for MPOs.

The video begins at 5:27.

View slides

Abstract: Today, most streets are designed and managed to meet mobility standards that focus on the movement of motor vehicles, failing to adequately accommodate and prioritize transit, walking, and biking. A new culture of innovation is needed in transportation as traditional solutions alone will not suffice. By 2035, the Portland Plan envisions transportation facilities that are designed and managed to prioritize travel investments that improve walking, biking, and universal accessibility as the first priority.

In support of this vision, Peter Koonce, Manager of the City's Signals, Street Lighting, & ITS Division will discuss how he's looking to make the City's traffic signals consistent with these goals resulting in more effective integration of land use, transit, cycling, and walking. The discussion will be centered around research that is needed to improve our understanding of best practices from the U.S. and Europe for application in Portland.

Pages